The inner workings of an ancient biological clock.

Trends Biochem Sci

Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry & Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA. Electronic address:

Published: March 2024

AI Article Synopsis

  • Circadian clocks have evolved in various organisms to adapt to daily changes in light and temperature due to Earth's rotation, helping synchronize behavior and physiology with environmental rhythms.
  • The cyanobacterial clock is a key model for studying circadian rhythms, as it can be fully reconstructed outside of living organisms.
  • Recent advancements in biochemical, biophysical, and mathematical techniques have improved our understanding of the molecular mechanisms of cyanobacterial Kai proteins, offering insights that may help answer ongoing questions in circadian biology.

Article Abstract

Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939747PMC
http://dx.doi.org/10.1016/j.tibs.2023.12.007DOI Listing

Publication Analysis

Top Keywords

inner workings
4
workings ancient
4
ancient biological
4
biological clock
4
clock circadian
4
circadian clocks
4
clocks evolved
4
evolved diverse
4
diverse organisms
4
organisms adaptation
4

Similar Publications

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Adsorption of Eu and Gd on high-charge micas as inner-sphere complexes.

J Colloid Interface Sci

January 2025

Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:

High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.

View Article and Find Full Text PDF

To investigate macula and optic nerve head (ONH) mitochondrial metabolic activity using flavoprotein fluorescence (FPF) in normal, glaucoma suspect (GS), and open-angle glaucoma (OAG) eyes we performed a cross-sectional, observational study of FPF in normal, GS, and OAG eyes. The macula and ONH of each eye was scanned and analyzed with a commercially available FPF measuring device (OcuMet Beacon, OcuSciences Inc., Ann Arbor, MI).

View Article and Find Full Text PDF

Purpose: This study aims to evaluate the effects of taper angle and the number of insertion-removal cycles on the retention force of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) double crowns over time.

Materials And Methods: Primary and secondary crowns were fabricated using 4Y-PSZ with taper angles of 2°, 4°, and 6° (n=15). Retention force during crown removal was measured after applying 50-N and 100-N loads.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!