The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC value of 1.13 ± 0.0047 and 1.086 ± 0.0131 μM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129222DOI Listing

Publication Analysis

Top Keywords

digestive enzymes
24
diosmin morin
12
polyphenolic compounds
8
molecular docking
8
pepsin trypsin
8
curcumin diosmin
8
morin 2'3'4'-trihydroxychalcone
8
selected pcs
8
enzymes
7
digestive
6

Similar Publications

Objectives: To evaluate the effects of postoperative pancreatic enzyme replacement therapy on fat digestion and absorption in patients following initial total pancreatectomy.

Methods: Data were retrospectively collected from patients who underwent initial total pancreatectomy at our department between 2012 and 2020. Fat digestion, absorption functions, serum nutritional markers, HbA1c levels, and hepatic steatosis before and after the initial total pancreatectomy were evaluated.

View Article and Find Full Text PDF

Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.

View Article and Find Full Text PDF

Comparison of two in vitro methods progressed in a computer-controlled simulated digestion system to determine amino acid digestibility of feed ingredients for yellow-feathered roosters.

Poult Sci

December 2024

The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

This experiment compared amino acid (AA) digestibility assessed by 2 in vitro methods using a computer-controlled simulated digestion system and in vivo assay for corn, soybean meal, casein, corn gluten meal, cottonseed meal, rapeseed meal and a corn-soybean meal diet. In vitro method 1 simulated gizzard digestion at pH 2.0, followed by small intestinal digestion, and the subsequent clearance of the digested product from dialysis tubing.

View Article and Find Full Text PDF

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

Laboratory-simulated marine heatwave enhances physiological damage to mussels exposed to titanium dioxide nanoparticles by disrupting the gut-hepatopancreas axis.

J Hazard Mater

December 2024

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The aggregation state of nano-TiO in the environment is altered under marine heatwaves (MHWs), thus affecting its bioavailability and toxicity to the marine organisms. Here, we investigated the toxic mechanisms and effects of nano-TiO on gut-hepatopancreas axis health of Mytilus coruscus exposed to 25 and 250 μg/L of nano-TiO under laboratory-simulated MHW. Compared with the control conditions or post-MHW cooling phase, prolonged MHW exposure significantly inhibited digestive function, decreased immune-related enzymes activities, and caused neurotoxicity in the mussels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!