The continuous spread of Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle, commonly known as the organism that causes pine wilt disease (PWD), has become a notable threat to forest security in East Asia and southern Europe, and an assessment of the carbon loss caused by PWD damage is important to achieving carbon neutrality. This study used satellite remote sensing and 15-year ground monitoring data to measure the impact of PWD on the carbon storage of Pinus massoniana Lamb. (P. massoniana), the conifer with the largest planted area in southern China. This study showed that the occurrence of PWD had an impact on the increase in carbon storage of P. massoniana. The infected and dead P. massoniana trees accounted for only 1.46 % of the total number of trees but caused a carbon storage loss of 1.99 t/ha, which accounted for 6.23 % of the total carbon sink in healthy P. massoniana forests over the last 15 years. The most pronounced decline in carbon storage occurred in the first five years of PWD invasion. After 10 years of clearcutting and replanting of Schima superba Gardn. et Champ., the increase in carbon storage of the reformed forest far exceeded that of the healthy forest during the same period, which was 2.04 times (10 years) and 1.56 times (15 years) that of the healthy P. massoniana forest. In addition, our study found that during the 15-year period (from the forest age of 22 to the forest age of 37), the average carbon storage of P. massoniana forest was 31.9 t/ha. This study helps to evaluate the impact of PWD on the carbon sink of pine forests and provides methodological references for analyzing the impact of biological disturbances on the carbon cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.169906 | DOI Listing |
Int J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.
View Article and Find Full Text PDFInorg Chem
December 2024
Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Graduate School of Science and Technology for Innovation, Yamaguchi University (YU), 2-16-1 Tokiwadai, Ube 755-8611, Japan.
To investigate efficient operating conditions for bipolar membrane electrodialysis (BMED), a comparison of current efficiency () and power intensity () was conducted using different anion-exchange membranes (AEMs) and salt solutions (NaCl and NaSO) as feed solutions in BMED. The results indicated that was higher and was lower for a commercial proton-blocking AEM (ACM) than for a standard AEM (ASE) when NaCl was used. This is because ASE has a higher water content than ACM, leading to greater H permeability, which reduces .
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!