An improved Back Propagation Neural Network framework and its application in the automatic calibration of Storm Water Management Model for an urban river watershed.

Sci Total Environ

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:

Published: March 2024

The use of the Storm Water Management Model (SWMM) to simulate flows in urban river watersheds necessitates the proper calibration of the various parameters involved in the process. Back Propagation Neural Network (BPNN) is often used to establish relationship between two sets of multivariate variables, such as parameters and simulation results of SWMM. The aim of this study is to establish an improved BPNN to calibrate SWMM. It was found that when using gauged flow data obtained from the urban river management system as calibration data, only using BPNN was not sufficient. An improved BPNN framework was proposed with integrating Principal Component Analysis (PCA) and Genetic Algorithm (GA) process, abbreviated as PCA-GA-BPNN. It was proved to be effective for calibration. The BPNN combined with GA process made 90 % of the predicted parameters within reasonable range, which was only 8 % using BPNN alone. The PCA process reduced the training time up to 64 %. Using a hydrograph of 196 h, compared with the nondominated sorting genetic algorithm (NSGA), PCA-GA-BPNN training time can be reduced from 18,142 s down to 4.5 s. Nash efficiency coefficients (NSE) of hydrographs fitting was 0.75. Including more rainfall events data in calibration achieved better fitting than including more gauging station data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.169886DOI Listing

Publication Analysis

Top Keywords

urban river
12
propagation neural
8
neural network
8
storm water
8
water management
8
management model
8
improved bpnn
8
genetic algorithm
8
training time
8
bpnn
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!