Mouse promotes spermatogonia proliferation through enhancing -mediated DNA replication.

Reprod Fertil Dev

Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.

Published: January 2024

Context: The human TSPY1 (testis-specific protein, Y-linked 1) gene is critical for spermatogenesis and male fertility. However, there have been difficulties with studying the mechanism underlying its function, partly due to the presence of the Tspy1 pseudogene in mice.

Aims: TSPYL5 (TSPY-like 5), an autosomal homologous gene of TSPY1 showing a similar expression pattern in both human and mouse testes, is also speculated to play a role in male spermatogenesis. It is beneficial to understand the role of TSPY1 in spermatogenesis by investigating Tspyl5 functions.

Methods: Tspyl5 -knockout mice were generated to investigate the effect of TSPYL5 knockout on spermatogenesis.

Key Results: Tspyl5 deficiency caused a decline in fertility and decreased the numbers of spermatogonia and spermatozoa in aged male mice. Trancriptomic detection of spermatogonia derived from aged Tspyl5 -knockout mice revealed that the Pcna -mediated DNA replication pathway was downregulated. Furthermore, Tspyl5 was proven to facilitate spermatogonia proliferation and upregulate Pcna expression by promoting the ubiquitination-degradation of the TRP53 protein.

Conclusions: Our findings suggest that Tspyl5 is a positive regulator for the maintenance of the spermatogonia pool by enhancing Pcna -mediated DNA replication.

Implications: This observation provides an important clue for further investigation of the spermatogenesis-related function of TSPY1 .

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD23042DOI Listing

Publication Analysis

Top Keywords

-mediated dna
12
spermatogonia proliferation
8
dna replication
8
tspyl5
8
tspyl5 -knockout
8
-knockout mice
8
pcna -mediated
8
spermatogonia
5
tspy1
5
mouse promotes
4

Similar Publications

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

Unlabelled: The persistence of HIV-1 reservoirs during combination anti-retroviral therapy (cART) leads to chronic immune activation and systemic inflammation in people with HIV (PWH), associating with a suboptimal immune reconstitution as well as an increased risk of non-AIDS events. This highlights the needs to develop novel therapy for HIV-1 related diseases in PWH. In this study, we assessed the therapeutic effect of CD24-Fc, a fusion protein with anti-inflammatory properties that interacts with danger-associated molecular patterns (DAMPs) and siglec-10, in chronic HIV-1 infection model using humanized mice undergoing suppressive cART.

View Article and Find Full Text PDF

Binding of transcription factors (TFs) at gene regulatory elements controls cellular epigenetic state and gene expression. Current genome-wide chromatin profiling approaches have inherently limited resolution, complicating assessment of TF occupancy and co-occupancy, especially at individual alleles. In this work, we introduce Accessible Chromatin by Cytosine Editing Site Sequencing with ATAC-seq (ACCESS-ATAC), which harnesses a double-stranded DNA cytosine deaminase (Ddd) enzyme to stencil TF binding locations within accessible chromatin regions.

View Article and Find Full Text PDF

Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors.

View Article and Find Full Text PDF

The SNF2 family chromatin remodeler HELLS has emerged as an important regulator of cell proliferation, genome stability, and several cancer pathways. Significant upregulation of HELLS has been reported in 33 human cancer types. While HELLS has been implicated in DNA damage response, its function in DNA repair is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!