An in-depth survey on Deep Learning-based Motor Imagery Electroencephalogram (EEG) classification.

Artif Intell Med

Department of Computer Science, University of Otago, Dunedin, New Zealand. Electronic address:

Published: January 2024

Electroencephalogram (EEG)-based Brain-Computer Interfaces (BCIs) build a communication path between human brain and external devices. Among EEG-based BCI paradigms, the most commonly used one is motor imagery (MI). As a hot research topic, MI EEG-based BCI has largely contributed to medical fields and smart home industry. However, because of the low signal-to-noise ratio (SNR) and the non-stationary characteristic of EEG data, it is difficult to correctly classify different types of MI-EEG signals. Recently, the advances in Deep Learning (DL) significantly facilitate the development of MI EEG-based BCIs. In this paper, we provide a systematic survey of DL-based MI-EEG classification methods. Specifically, we first comprehensively discuss several important aspects of DL-based MI-EEG classification, covering input formulations, network architectures, public datasets, etc. Then, we summarize problems in model performance comparison and give guidelines to future studies for fair performance comparison. Next, we fairly evaluate the representative DL-based models using source code released by the authors and meticulously analyse the evaluation results. By performing ablation study on the network architecture, we found that (1) effective feature fusion is indispensable for multi-stream CNN-based models. (2) LSTM should be combined with spatial feature extraction techniques to obtain good classification performance. (3) the use of dropout contributes little to improving the model performance, and that (4) adding fully connected layers to the models significantly increases their parameters but it might not improve their performance. Finally, we raise several open issues in MI-EEG classification and provide possible future research directions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2023.102738DOI Listing

Publication Analysis

Top Keywords

mi-eeg classification
12
motor imagery
8
eeg-based bci
8
dl-based mi-eeg
8
model performance
8
performance comparison
8
classification
5
performance
5
in-depth survey
4
survey deep
4

Similar Publications

Introduction: Motor Imagery (MI) Electroencephalography (EEG) signals are non-stationary and dynamic physiological signals which have low signal-to-noise ratio. Hence, it is difficult to achieve high classification accuracy. Although various machine learning methods have already proven useful to that effect, the use of many features and ineffective EEG channels often leads to a complex structure of classifier algorithms.

View Article and Find Full Text PDF

Motion Cognitive Decoding of Cross-Subject Motor Imagery Guided on Different Visual Stimulus Materials.

J Integr Neurosci

December 2024

Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China.

Background: Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding.

Methods: To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms.

View Article and Find Full Text PDF

Non-invasive brain-computer interfaces (BCI) hold great promise in the field of neurorehabilitation. They are easy to use and do not require surgery, particularly in the area of motor imagery electroencephalography (EEG). However, motor imagery EEG signals often have a low signal-to-noise ratio and limited spatial and temporal resolution.

View Article and Find Full Text PDF

A hybrid network using transformer with modified locally linear embedding and sliding window convolution for EEG decoding.

J Neural Eng

January 2025

West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.

. Brain-computer interface(BCI) is leveraged by artificial intelligence in EEG signal decoding, which makes it possible to become a new means of human-machine interaction. However, the performance of current EEG decoding methods is still insufficient for clinical applications because of inadequate EEG information extraction and limited computational resources in hospitals.

View Article and Find Full Text PDF

An Empirical Model-Based Algorithm for Removing Motion-Caused Artifacts in Motor Imagery EEG Data for Classification Using an Optimized CNN Model.

Sensors (Basel)

November 2024

Humanitarian Technology (HuT) Labs, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India.

Article Synopsis
  • EEG is a non-invasive, portable technique widely used in brain-computer interfaces (BCIs) to help individuals with severe mobility issues control devices like wheelchairs through motor imagery signals.
  • The study introduces a new approach for enhancing the quality of EEG recordings by addressing motion artifacts, which traditional methods struggle with, especially for users in motion.
  • Utilizing a modified CNN deep learning algorithm and considering real-world variables, the research achieved a high classification accuracy of 94.04% in distinguishing movements, showcasing its effectiveness for practical BCI applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!