Accelerating and sustaining progress: PEPFAR's path to achieving 95-95-95 by 2030.

BMJ Glob Health

Bureau of Global Health Security and Diplomacy, President's Emergency Plan for AIDS Relief, Washington, District of Columbia, USA.

Published: January 2024

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773333PMC
http://dx.doi.org/10.1136/bmjgh-2023-014513DOI Listing

Publication Analysis

Top Keywords

accelerating sustaining
4
sustaining progress
4
progress pepfar's
4
pepfar's path
4
path achieving
4
achieving 95-95-95
4
95-95-95 2030
4
accelerating
1
progress
1
pepfar's
1

Similar Publications

Objective: Incorporate sleep into a novel lifestyle intervention strategy in adolescents with Emerging symptoms of polycystic ovary syndrome (E-PCOS).

Design: A single-center cohort study.

Setting: University hospital-based clinic for adolescents with PCOS.

View Article and Find Full Text PDF

Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Synergistic enhancement of high-barrier polylactic acid packaging materials by various morphological carbonized cellulose nanocrystals.

Carbohydr Polym

March 2025

Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

The environmental challenges linked to petroleum-based polymers have accelerated the search for alternative materials like polylactic acid (PLA). Diverse nanofillers, ranging from inorganic to organic and hybrid inorganic/organic varieties, are employed to bolster PLA performance. Yet, non-synergistic nanofillers often underperform due to inadequate dispersion and singular functionality within the PLA matrix.

View Article and Find Full Text PDF

An injectable in situ-forming hydrogel with self-activating genipin-chitosan (GpCS) cross-linking and an O/Ca self-supplying capability for wound healing and rapid hemostasis.

Carbohydr Polym

March 2025

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!