Aims: The cellular defense system against oxidative stress is important for the survival ability and sensitization in chemotherapy; however, the regulatory mechanisms remain unknown in triple-negative breast cancer (TNBC) cells. This study aimed to investigate the relationship between ferroptosis and autophagy by targeting the defense of oxidative stress through the cystine transporter (xCT) using sulfasalazine (SASP), which is a widely employed xCT inhibitor.
Main Methods: We analyzed the cell death process of SASP in human TNBC cells, and examined the effects of SASP on tumor progression by using xenograft mouse model.
Key Findings: TNBC cells demonstrated a high defense capacity against reactive oxidative species through xCT. SASP significantly attenuated oxidative stress resistance in MDA-MB-231, which is a generally used model cell as TNBC, through decreased glutathione levels, causing a marked iron-dependent ferroptotic cell death induction. Moreover, autophagy was required to trigger efficient SASP-induced ferroptosis at the early stage of cell death. Tamoxifen, which is currently in clinical use as the gold standard for endocrine therapy of estrogen receptor-positive breast cancer, was a beneficial tool as an autophagy regulator under ferroptotic cell death by SASP. Additionally, SASP suppressed tumor growth and metastasis progression through total glutathione reduction in the primary tumor, indicating high anticancer activity against TNBC without liver injury in vivo.
Significance: We revealed that SASP can efficiently induce ferroptosis associated with autophagy and that an understanding of the mechanism of cell death regulation by SASP is a promising new strategy for TNBC therapy and drug repositioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.122411 | DOI Listing |
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFVet Res Forum
November 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Acta Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!