Among numerous disinfection by-products (DBP) forming during aqueous chlorination nitrogen containing species are of special concern due to their toxicological properties. Nevertheless, corresponding reaction products of these natural and anthropogenic compounds are not sufficiently studied so far. An interesting reaction involves dealkylation of the substituted amine moiety. Here we present the results of the comparative study of one-electron oxidation and aqueous chlorination of several aliphatic and aromatic amines. The reaction products were reliably identified with gas chromatography - high resolution mass spectrometry (GC-HRMS), high pressure liquid chromatography - electrospray ionization high resolution mass spectrometry HPLC-ESI/HRMS), and electrochemistry - electrospray ionization high resolution mass spectrometry (EC-ESI/HRMS). Certain similarities dealing with the formation of the corresponding aldehydes and substitution of alkyl groups at the nitrogen atom for hydrogen were shown for the studied processes. The mechanism of the substituted amines' aqueous chlorination involving one-electron oxidation is proposed and confirmed by the array of the observed reaction products. Alternative reactions taking place in conditions of aqueous chlorination, i.e. aromatic electrophilic substitution, may successfully compete with dealkylation and produce major products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141117 | DOI Listing |
Se Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:
There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (TCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.
View Article and Find Full Text PDFACS Nano
January 2025
BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea.
The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.
Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.
View Article and Find Full Text PDFAnal Methods
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!