Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831958PMC
http://dx.doi.org/10.1016/j.crmeth.2023.100681DOI Listing

Publication Analysis

Top Keywords

modular adaptable
4
adaptable analysis
4
analysis pipeline
4
pipeline compare
4
compare slow
4
slow cerebral
4
cerebral rhythms
4
rhythms heterogeneous
4
heterogeneous datasets
4
datasets neuroscience
4

Similar Publications

Existing support systems for thermal pipeline trenches often fail to meet the specific needs of narrow strips, tight timelines, and short construction periods in urban environments. This study introduces a novel recyclable, non-embedded support system composed of corrugated steel plates, retractable horizontal braces, angle steel, and high-strength bolts designed to address these challenges. The system's effectiveness was validated through prototype testing and optimized using Abaqus finite element simulations.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Diversity of ectoparasitic bat flies (Diptera, Hippoboscoidea) in inter-Andean valleys: evaluating interactions in the largest inter-Andean basin of Colombia.

Zookeys

December 2024

Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia Universidad de Caldas Manizales Colombia.

Article Synopsis
  • Bat flies from the Streblidae and Nycteribiidae families have evolved specialized traits to feed on bats' blood and form specific associations with different bat species.
  • The Magdalena River basin in Colombia, which supports 98 bat species, reveals a diverse and modular interaction between bats and bat flies through field studies and literature review.
  • The study demonstrates medium specialization among bat flies, highlighting competitive relationships among species and suggesting that environmental conditions influence these dynamics in bat populations.
View Article and Find Full Text PDF

Introduction: Heritage sites often pose significant accessibility challenges for individuals with visual disabilities due to their preserved architectural features and strict regulations against modifications. In shared streets, designed to encourage pedestrian use and reduce vehicle dominance, these challenges are exacerbated by the lack of tactile and directional cues for visually impaired users. This study, set in the context of Canadian heritage sites, explores how shared streets can be adapted to be more inclusive while respecting the integrity of historical environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!