Single-cell RNA sequencing reveals the role of mitochondrial dysfunction in the cardiogenic toxicity of perfluorooctane sulfonate in human embryonic stem cells.

Ecotoxicol Environ Saf

Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China. Electronic address:

Published: January 2024

Perfluorooctane sulfonate (PFOS), an endocrine-disrupting chemical pollutant, affects embryonic heart development; however, the mechanisms underlying its toxicity have not been fully elucidated. Here, Single-cell RNA sequencing (scRNA-seq) was used to investigate the overall effects of PFOS on myocardial differentiation from human embryonic stem cells (hESCs). Additionally, apoptosis, mitochondrial membrane potential, and ATP assays were performed. Downregulated cardiogenesis-related genes and inhibited cardiac differentiation were observed after PFOS exposure in vitro. The percentages of cardiomyocyte and cardiac progenitor cell clusters decreased significantly following exposure to PFOS, while the proportion of primitive endoderm cell was increased in PFOS group. Moreover, PFOS inhibited myocardial differentiation and blocked cellular development at the early- and middle-stage. A Gene Ontology analysis and pseudo-time trajectory illustrated that PFOS disturbed multiple processes related to cardiogenesis and oxidative phosphorylation in the mitochondria. Furthermore, PFOS decreased mitochondrial membrane potential and induced apoptosis. These results offer meaningful insights into the cardiogenic toxicity of PFOS exposure during heart formation as well as the adverse effects of PFOS on mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.115945DOI Listing

Publication Analysis

Top Keywords

pfos
10
single-cell rna
8
rna sequencing
8
cardiogenic toxicity
8
perfluorooctane sulfonate
8
human embryonic
8
embryonic stem
8
stem cells
8
effects pfos
8
myocardial differentiation
8

Similar Publications

High-throughput screening of protein interactions with per- and polyfluoroalkyl substances (PFAS) used in photolithography.

J Hazard Mater

January 2025

Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA; Department of Environmental and Occupational Health, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used extensively across industries, including semiconductor manufacturing. Semiconductors are ubiquitous, and there is increasing global demand for semiconductors, e.g.

View Article and Find Full Text PDF

PFAS concentrations in the blood of Danish surfers.

Int J Hyg Environ Health

January 2025

Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Havrevangen 1, 9000, Aalborg C, Denmark; Department of Clinical Medicine, Aalborg University, Selma Lagerløftsvej 249, 9260, Aalborg, Denmark.

Background: Per- and poly-fluoroalkyl Substances (PFAS) have been used for decades in countless households and industrial products. Many PFAS do not degrade and are thus ubiquitous in the environment and within organisms. Humans are primarily exposed to PFAS through ingestion and inhalation, and such exposure has been associated with several health effects.

View Article and Find Full Text PDF

Advances in waste-derived functional materials for PFAS remediation.

Biodegradation

January 2025

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.

Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.

View Article and Find Full Text PDF

This study was performed to evaluate the occurrence of perfluorinated substances (PFAS) in European perch (Perca fluviatilis) samples from Latvian freshwater bodies. Twenty-nine samples of perch tissue homogenates were analyzed on the content of PFAS representing different sampling sites to cover all territory of Latvia evenly. The total PFAS concentrations (∑) ranged from 0.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a widely distributed and persistent organic pollutant, is known to cause immune dysfunction. In a previous study, we reported that PFOS modestly increases mast cell activation. However, its effects on FcεRI (a high-affinity IgE receptor)-mediated mast cell activation, a pivotal process in inflammatory allergic reactions and innate immunity, have not been clearly demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!