Single-modified fluorogenic primer (Sfp) enables accurate identification of LAMP amplicons without being affected by non-specific products. However, the fluorescence self-quenching by nucleobases for Sfp is generally of low efficiency, and the high background signal makes it a great challenge to achieve visual inspection with naked eyes. In the present study, the oligonucleotide (Ao) complementary to Sfp was designed, which would hybridize to Sfp and dramatically heighten the quenching effect, leading to a low background signal in negative reaction. Instead, for positive reaction, Sfp is incorporated into the double-stranded amplicons, resulting in dequenching and consequently, enhanced fluorescence. The detection scheme can be further improved by a dual-color fluorescence strategy, allowing visual detection of 1 pg rainbow trout DNA in a closed-tube format within 30 min. Therefore, our LAMP-Ao-Sfp assay represents a useful tool for rapid and sensitive detection, and can serve as a reliable method for on-site detection in low-resource settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.138354DOI Listing

Publication Analysis

Top Keywords

enhanced fluorescence
8
background signal
8
sfp
5
development one-pot
4
one-pot sequence-specific
4
sequence-specific lamp
4
lamp assay
4
assay based
4
based self-quenching
4
self-quenching probe
4

Similar Publications

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.

View Article and Find Full Text PDF

detection of hypochlorous acid (HOCl) is critical for understanding its complex physiological and pathological roles. Fluorescent probes, known for their sensitivity and selectivity, are the preferred approach for such detections. Anthracene carboxyimide, an analog of naphthalimide, offers extended excitation and emission wavelengths, making it an excellent candidate for developing new fluorescent probes that address the limitations of naphthalimide.

View Article and Find Full Text PDF

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.

View Article and Find Full Text PDF

Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!