The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV). The VCs 1,2-dimethoxybenzene, 1,2,3-trimethoxybenzene, (E)-linalool oxide (pyranoid), methyl salicylate, linalool, β-ionone, β-damascenone were the key characteristic VCs of RIPT fermented by M. purpureus. OAV and Gas chromatography-olfactometry (GC-O) further indicated that β-damascenone was the highest contribution VCs to the characteristic flavor of RIPT fermented by M. purpureus. This study reveals the specificities and contributions of VCs present in RIPT under different fermentation methods, thus providing new insights into the influence of microorganisms on RIPT flavor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.138249DOI Listing

Publication Analysis

Top Keywords

ript fermented
16
vcs ript
12
monascus purpureus
8
ripe pu-erh
8
pu-erh tea
8
fermentation methods
8
volatile compounds
8
fermented purpureus
8
vcs
6
ript
6

Similar Publications

Effects of Monascus purpureus on ripe Pu-erh tea in different fermentation methods and identification of characteristic volatile compounds.

Food Chem

May 2024

College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; College of Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China. Electronic address:

The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV).

View Article and Find Full Text PDF

Pu-Erh tea, as a typical post-fermented tea, can be divided into raw Pu-Erh tea (RAPT) and ripened Pu-Erh tea (RIPT) according to the processing technology. It is famous for its unique aroma after aging. Although previous research on the aroma characteristics of Pu-Erh tea mostly focused on the aroma compounds, little research on chiral compounds in RAPT and RIPT has been performed.

View Article and Find Full Text PDF

Infusions prepared from raw pu-erh tea (RAPT) and ripened pu-erh tea (RIPT) showed remarkable aroma differences. Predominant odorants in RAPT and RIPT infusions were identified and compared by the combined use of gas chromatography-olfactometry, aroma extract dilution analysis, odor activity values (OAVs), and multivariate analysis. A total of 35 and 19 odorants (OAV > 1) were detected in RIPT and RAPT, respectively.

View Article and Find Full Text PDF

Pu-erh tea is produced from the leaves of large-leaf tea species ( var. assamica) in the Yunnan province of China and divided into ripened pu-erh tea (RIPT, with pile-fermentation) and raw pu-erh tea (RAPT) according to processing methods. RIPT extract showed more potent anti-diabetic effects on two-hour postprandial blood glucose (2h-PBG) and fasting blood glucose (FBG) than RAPT extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!