The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV). The VCs 1,2-dimethoxybenzene, 1,2,3-trimethoxybenzene, (E)-linalool oxide (pyranoid), methyl salicylate, linalool, β-ionone, β-damascenone were the key characteristic VCs of RIPT fermented by M. purpureus. OAV and Gas chromatography-olfactometry (GC-O) further indicated that β-damascenone was the highest contribution VCs to the characteristic flavor of RIPT fermented by M. purpureus. This study reveals the specificities and contributions of VCs present in RIPT under different fermentation methods, thus providing new insights into the influence of microorganisms on RIPT flavor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.138249 | DOI Listing |
Food Chem
May 2024
College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; College of Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China. Electronic address:
The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV).
View Article and Find Full Text PDFJ Agric Food Chem
July 2022
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
Pu-Erh tea, as a typical post-fermented tea, can be divided into raw Pu-Erh tea (RAPT) and ripened Pu-Erh tea (RIPT) according to the processing technology. It is famous for its unique aroma after aging. Although previous research on the aroma characteristics of Pu-Erh tea mostly focused on the aroma compounds, little research on chiral compounds in RAPT and RIPT has been performed.
View Article and Find Full Text PDFJ Agric Food Chem
November 2019
College of Food Science and Nutritional Engineering , China Agricultural University: National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083 , China.
Infusions prepared from raw pu-erh tea (RAPT) and ripened pu-erh tea (RIPT) showed remarkable aroma differences. Predominant odorants in RAPT and RIPT infusions were identified and compared by the combined use of gas chromatography-olfactometry, aroma extract dilution analysis, odor activity values (OAVs), and multivariate analysis. A total of 35 and 19 odorants (OAV > 1) were detected in RIPT and RAPT, respectively.
View Article and Find Full Text PDFRSC Adv
January 2019
Beijing Institute of Radiation Medicine No. 27 Taiping Road, Haidian District Beijing 100850 China +86-010-66930282.
Pu-erh tea is produced from the leaves of large-leaf tea species ( var. assamica) in the Yunnan province of China and divided into ripened pu-erh tea (RIPT, with pile-fermentation) and raw pu-erh tea (RAPT) according to processing methods. RIPT extract showed more potent anti-diabetic effects on two-hour postprandial blood glucose (2h-PBG) and fasting blood glucose (FBG) than RAPT extract.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!