A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microscopic urinary particle detection by different YOLOv5 models with evolutionary genetic algorithm based hyperparameter optimization. | LitMetric

Microscopic urinary particle detection by different YOLOv5 models with evolutionary genetic algorithm based hyperparameter optimization.

Comput Biol Med

Department of Biomedical Engineering, PSG College of Technology, Coimbatore, 641004, India. Electronic address:

Published: February 2024

AI Article Synopsis

  • The study addresses the challenges of traditional manual urinalysis for kidney disease by introducing an advanced deep learning model using the YOLOv5 architecture, which improves speed and reduces data requirements compared to conventional methods.
  • The model detects six types of urine particles using a dataset of 5,376 microscopic images and employs a genetic algorithm to optimize hyperparameters, resulting in varying performances across the detected categories.
  • Among the YOLOv5 variants tested, YOLOv5l and YOLOv5x delivered the best overall performance, with mean average precision (mAP) values of 85.8% and 85.4%, respectively, while mycete detection achieved the highest mAP of 97

Article Abstract

The diagnosis of kidney disease often involves analysing urine sediment particles. Traditionally, urinalysis was performed manually by collecting urine samples and using a centrifuge, which was prone to manual errors and relied on labour-intensive processes. Automated urine sediment microscopy, based on machine learning models, requires segmentation and feature extraction, which can hinder model performance due to intrinsic characteristics of microscopic images. Deep learning models based on convolutional neural networks (CNNs) often rely on a large number of manually annotated data, making the system computationally complex. This study propose an advanced deep learning model based on YOLOv5, which offers faster performance and requires comparatively less data. The proposed model used five variants of the YOLOv5 model (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) to detect six categories of urine particles (erythrocyte, leukocyte, crystals, cast, mycete, epithelial cells) from microscopic urine sediment images. The dataset involved 5376 images of urine sediments with 6 particles. There are 30 sets of hyperparamreteres are employed in the YOLOv5 model. To optimize the hyperparameters and fine-tune with the urine sediment dataset and for training each model, the system employed a genetic algorithm (GA) based on evolutionary principles named as Evolutionary Genetic Algorithm (EGA). Among the six categories of detected particles mycete achieved maximum performance with a mAP of 97.6 % and crystals achieved minimum performance with a mAP of 81.7 % with YOLOv5x model compared to other particles. To optimize the hyperparameters for training each model, the system employed a genetic algorithm (GA) based on evolutionary principles named as Evolutionary Genetic Algorithm (EGA). Among all the models, YOLOv5l and YOLOv5x performed the best. YOLOv5l achieved a mean average precision (mAP) of 85.8 % while YOLOv5x achieved a mAP of 85.4 % at an IoU threshold of 0.5. The detection speed per image was 23.4 ms for YOLOv5l and 28.4 ms for YOLOv5x. The proposed method developed a faster and better automated microscopic model using advanced deep learning techniques to detect urinary particles from microscopic urine sediment images for kidney disease identification. The method demonstrated strong performance in urinalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107895DOI Listing

Publication Analysis

Top Keywords

genetic algorithm
20
urine sediment
20
evolutionary genetic
12
algorithm based
12
deep learning
12
model
9
kidney disease
8
urine
8
learning models
8
advanced deep
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!