A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How to Build Plasmon-Driven Molecular Jackhammers that Disassemble Cell Membranes and Cytoskeletons in Cancer. | LitMetric

Plasmon-driven molecular machines with ultrafast motion at the femtosecond scale are effective for the treatment of cancer and other diseases. It is recently shown that cyanine dyes act as molecular jackhammers (MJH) through vibronic (vibrational and electronic mode coupling) driven activation that causes the molecule to stretch longitudinally and axially through concerted whole molecule vibrations. However, the theoretical and experimental underpinnings of these plasmon-driven motions in molecules are difficult to assess. Here the use of near-infrared (NIR) light-activated plasmons in a broad array of MJH that mechanically disassemble membranes and cytoskeletons in human melanoma A375 cells is described. The characteristics of plasmon-driven molecular mechanical disassembly of supramolecular biological structures are observed and recorded using real-time fluorescence confocal microscopy. Molecular plasmon resonances in MJH are quantified through a new experimental plasmonicity index method. This is done through the measurement of the UV-vis-NIR spectra in various solvents, and quantification of the optical response as a function of the solvent polarity. Structure-activity relationships are used to optimize the synthesis of plasmon-driven MJH, applying them to eradicate human melanoma A375 cells at low lethal concentrations of 75 nm and 80 mW cm of 730 nm NIR-light for 10 min.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202309910DOI Listing

Publication Analysis

Top Keywords

plasmon-driven molecular
12
molecular jackhammers
8
membranes cytoskeletons
8
human melanoma
8
melanoma a375
8
a375 cells
8
molecular
5
build plasmon-driven
4
jackhammers disassemble
4
disassemble cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!