Biological Applications of Thermoplasmonics.

Nano Lett

Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.

Published: January 2024

AI Article Synopsis

  • Thermoplasmonics is a versatile technique that uses laser-activated plasmonic nanostructures to generate heat, enabling significant advancements in various biological fields, including medical science, cell biology, and biophysics.
  • This method allows for the investigation of essential biological processes such as cell differentiation and protein functionality, and enhances biosensing techniques, highlighted by its role in speeding up DNA amplification in research.
  • Recent clinical trials of photothermal therapy for prostate cancer have shown promising results, indicating that thermoplasmonics could be used to treat various diseases in the future, showcasing the rapid progress in this innovative field.

Article Abstract

Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811673PMC
http://dx.doi.org/10.1021/acs.nanolett.3c03548DOI Listing

Publication Analysis

Top Keywords

photothermal therapy
8
biological applications
4
thermoplasmonics
4
applications thermoplasmonics
4
thermoplasmonics thermoplasmonics
4
thermoplasmonics emerged
4
emerged extraordinarily
4
extraordinarily versatile
4
versatile tool
4
tool profound
4

Similar Publications

A stimuli-responsive drug delivery system based on konjac glucomannan, carboxymethyl chitosan and mesoporous polydopamine nanoparticles.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

A stimuli-responsive drug delivery system is developed for controlled delivery of curcumin (Cur) and chemo-photothermal therapy of breast cancer (BC). Cur is first loaded into mesoporous polydopamine nanoparticles (mPDA NPs) by π-π stacking, and then the Cur loaded mPDA NPs (mPDA NPs@Cur) are encapsulated in the hydrogels prepared through the crosslinking of oxidized konjac glucomannan (oxKGM) and carboxymethyl chitosan (CMCS). Owing to the pH-sensitivity of the hydrogels and the outstanding photothermal conversion capability of mPDA NPs, the release of Cur from the hydrogels can be greatly accelerated in acidic media upon near infrared (NIR) irradiation.

View Article and Find Full Text PDF

Melanoma, an aggressive skin tumor, is prone to metastasis, significantly reducing patient survival rates once it occurs. Tumor microvascularity is a key factor in metastasis, making the inhibition of microvascular formation crucial. Emerging photothermal therapy (PTT) and microneedles (MNs) have garnered attention due to their non-invasive and controllable nature.

View Article and Find Full Text PDF

Nanotechnology for the Diagnosis and Treatment of Liver Cancer.

Int J Nanomedicine

December 2024

Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.

Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC.

View Article and Find Full Text PDF

Managing wounds infected with multi-drug-resistant (MDR) bacteria remains a significant public health challenge in clinical settings. While multifunctional hydrogels are commonly employed to treat skin infections, there is a scarcity of hydrogels that effectively combine cationic guar gum (CG) with both potent antimicrobial and safe therapeutic actions. This study introduces a novel pH responsive, dual-dynamically crosslinked hydrogel (CFC-PDA/Ag), synthesized by crosslinking CG with polydopamine (PDA)-coated silver nanozymes (PDA/PM-AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!