X-rays are widely used in mammography and radiotherapy of breast cancer. The research has focused on the effects of X-rays on cells in breast tissues, instead of the tissues' nonliving material, extracellular matrix. It is unclear what the influence of X-ray irradiation is on the matrix's mechanical cues, known to regulate malignant cancer-cell behaviors. Here, we developed a technique based on magnetic microrheology that can quantify the influence of X-ray irradiation on matrix viscoelasticity--or (solid-like) elastic and (liquid-like) viscous characteristics--at cell-size scales. To model breast-tissue extracellular matrix, we used the primary component of the tissue matrix, collagen type 1, as it is for control, and as irradiated by X-rays (tube voltage 50 kV). We used a magnetic microrheometer to measure collagen matrices using 10-μm-diameter magnetic probes. In each matrix, the probes were nanomanipulated using controlled magnetic forces by the microrheometer while the probes' displacements were detected to measure the viscoelasticity. The collagen-matrix data involve with a typical spatial variation in viscoelasticity. We find that higher irradiation doses (320 Gy) locally reduce stiffness (soften) collagen matrices and increase their loss tangent, indicating an elevated liquid-like nature. For lower, clinically relevant irradiation doses (54 Gy), we find insignificant matrix-viscoelasticity changes. We provide this irradiation-related technique for detection, and modification, of matrix viscoelastic cues at cell-size scales. The technique enables enhanced characterization of irradiated tissue constituents in a variety of breast-cancer radiotherapy types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.4064404 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).
Rationale And Objectives: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.
Materials And Methods: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs).
Int J Biol Macromol
January 2025
Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:
Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.
View Article and Find Full Text PDFNucl Med Biol
January 2025
State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia. Electronic address:
Introduction: Folate receptors (FR) have been considered a convenient target for different radiopharmaceuticals in recent years. Multifarious Ga-labeled folate conjugates have been proposed as promising agents for the PET imaging of FR-overexpressing malignant neoplasms. In addition, radiolabeled folate-based conjugates can be effective for imaging non-tumor pathological foci characterized by a pronounced cluster of activated macrophages.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:
Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
The human patellar tendon contains distinct fascicle bundles across its mediolateral and anteroposterior regions. Studies have suggested region-specific behaviour during in vivo actions, but it is unclear whether such regional differences result from localized variation in composition and mechanical properties within the tendon itself. Furthermore, the viscoelastic properties of any region of the human patellar tendon have not been well described previously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!