Albendazole (ALB) and bithionol (BIT) are two anthelmintic drugs (ADs) with high consumption from benzimidazole group and diphenylsulfide group, respectively. However, information on the transformation of the two anthelmintics under environmental condition is scare. Therefore, in the present study, we investigated the natural attenuation of the two ADs in the aquatic environment, including biodegradation, hydrolysis, and direct and indirect photodegradation. The direct photodegradation occupied a vast portion among other degradation pathways of the two ADs in natural water, with near-surface summer half-lives of 0.272-0.387 h and 0.110-0.520 h for ALB and BIT, respectively. Suspended particles in water were found to facilitate the photodegradation of the two ADs. Study on the indirect photodegradation demonstrated the positive roles of singlet oxygen (O) and excited triplet dissolved organic matter (DOM*) in the photolysis of the two ADs, whereas the hydroxyl radical (•OH) affected little on the overall photodegradation procedures of ALB due to the scavenging effect of HCO. Dual effects of DO, DOM, HCO, NO, and NO on the photodegradation of ALB and BIT were perceived. Transformation intermediates (TIs) of the two ADs during photodegradation were analyzed by UHPLC-QTOF-MS. Six TIs of ALB were identified, including a broad-spectrum fungicide carbendazim and another common AD ricobendazole. Two TIs of BIT yielded from dechlorination were also detected. Probable transformation mechanism and predicted aquatic ecotoxicity based on the identified TIs were unveiled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-31778-w | DOI Listing |
Water Res
December 2024
School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:
This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Physical Chemistry-Ilie Murgulescu of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania.
Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!