Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects.

Environ Sci Pollut Res Int

Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.

Published: February 2024

Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-31669-0DOI Listing

Publication Analysis

Top Keywords

agnps
5
silver nanoparticle
4
nanoparticle ecotoxicity
4
ecotoxicity phytoremediation
4
phytoremediation critical
4
critical review
4
review current
4
current future
4
future prospects
4
prospects silver
4

Similar Publications

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Background: Real-time and rapid detection of ingredients in food has important significance for food safety. However, traditional detection methods not only require bulky and costly instruments but also are often based on single-mode analysis, limiting their accuracy and applications in point-of-care testing. Herein, an integrated and miniaturized dual-mode device based on colorimetric and photoacoustic (PA) principles is developed, using Au@Ag nanoparticles (Au@AgNPs) as signal probe and ascorbic acid (AA) and ascorbate oxidase (AAO) as analytes.

View Article and Find Full Text PDF

Speciation, Distribution and Environmental Risk of Dominant Silver-Containing Nanoparticles in the Taihu Lake, China.

Environ Pollut

January 2025

School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.

Silver-containing nanoparticles (AgCNPs) have attracted increasing concerns because of their potential adverse effects on aquatic ecosystems. However, minimal information is available regarding their concentration, distribution, and speciation in the actual environment. In this work, different species of AgCNPs, including silver nanoparticles (AgNPs), silver chloride (AgCl NPs) and silver sulfide (AgS NPs) in water and sediment samples from Taihu Lake were analyzed by a multistep selective dissolution method combined with single-particle inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Analysis of the spatial distribution of metabolites in Aloe vera leaves by mass spectrometry imaging and UHPLC-UHRMS.

Sci Rep

January 2025

Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland.

This study presents an investigation of the chemical composition of Aloe vera leaf tissue with a focus on the spatial distribution of compounds. The composition was studied using two mass spectrometry imaging techniques: silver-109 nanoparticles assisted laser desorption/ionization mass spectrometry imaging (AgNPs-LDI-MSI) and laser ablation-remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) and the identification was aided by ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) analysis. The results showed an abundance of phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties, making it a beneficial food additive and food packaging material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!