Estimation of knee contact force (KCF) during gait provides essential information to evaluate knee joint function. Machine learning has been employed to estimate KCF because of the advantages of low computational cost and real-time. However, the existing machine learning models do not adequately consider gait-related data's temporal-dependent, multidimensional, and highly heterogeneous nature. This study is aimed at developing a multisource fusion recurrent neural network to predict the medial condyle KCF. First, a multisource fusion long short-term memory (MF-LSTM) model was established. Then, we developed a transfer learning strategy based on the MF-LSTM model for subject-specific medial KCF prediction. Four subjects with instrumented tibial prostheses were obtained from the literature. The results showed that the MF-LSTM model could predict medial KCF to a certain high level of accuracy (the mean of ρ = 0.970). The transfer learning model improved the prediction accuracy (the mean of ρ = 0.987). This study shows that the MF-LSTM model is a powerful and accurate computational tool for medial KCF prediction. Introducing transfer learning techniques could further improve the prediction performance for the target subject. This coupling strategy can help clinicians accurately estimate and track joint contact forces in real time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-023-03011-wDOI Listing

Publication Analysis

Top Keywords

transfer learning
16
mf-lstm model
16
multisource fusion
12
medial kcf
12
knee contact
8
contact force
8
fusion recurrent
8
recurrent neural
8
neural network
8
machine learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!