Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session207et8c5odcnv02ktn0na28g2oc6h0ab): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897483 | PMC |
http://dx.doi.org/10.1038/s44321-023-00008-8 | DOI Listing |
Orphanet J Rare Dis
December 2024
Medicine for Society, Platform at Amsterdam University Medical Center - University of Amsterdam, Amsterdam, The Netherlands.
Background: The combination of high prices and uncertain effectiveness is a growing challenge in the field of orphan medicines, hampering health technology assessments. Hence, new methods for establishing price benchmarks might be necessary to support reimbursement negotiations. In this study, we applied several pricing models containing cost-based elements to the case of lumasiran for treating primary hyperoxaluria type 1.
View Article and Find Full Text PDFCureus
November 2024
Nephrology, SRM Medical College Hospital and Research Centre, Chennai, IND.
Catheter-related bloodstream infections (CRBSIs) add to the morbidity and mortality of hemodialysis patients. is an extremely resistant, gram-negative, non-lactose-fermenting nosocomial bacterium that contributes significantly to mortality and morbidity. This bacterium is predominantly associated with community-acquired pneumonia, bacteremia, eye afflictions, biliary sepsis, urinary tract infection, skin and soft tissue infection, and very rarely chronic enteritis with colonic ulcers.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
December 2024
Section of Nephrology, Department of Medicine, Università degli Studi di Verona, Verona, Italy.
Purpose Of Review: Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of hepatic glyoxylate metabolism leading to nephrolithiasis and kidney failure. PH1 is caused by mutations on the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT). The AGXT gene has two haplotypes, the major (Ma) and the minor (mi) alleles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain. Electronic address:
To improve protein pharmaceuticals, we need to balance protein stability and binding affinity with in vivo efficiency. We have recently developed a nanobody (NB-AGT-2) against the alanine:glyoxylate aminotransferase with high stability (T ∼ 86 °C) that may be useful to treat a misfolding disease called primary hyperoxaluria type 1. In this work, we characterize the relationships between protein stability and binding affinity in NB-AGT-2 by generating single and double cavity-creating mutants in its hydrophobic core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!