A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of residual energy intake on nutrient use, methane emissions and microbial composition in dairy cows. | LitMetric

For sustainable food production selection and breeding of feed efficient animals is crucial. The objective of this study was to evaluate whether multiparous dairy cows, ranked during their first lactation based on residual energy intake (REI) as efficient (low; L-REI) or inefficient (high; H-REI), differ in terms of nutrient use efficiency, methane emissions, rumen fermentation, and gut microbiota composition. Six L-REI and 6 H-REI cows were offered two diets with either a low or high proportion of concentrates (30 vs. 50% of DM) on two consecutive periods of 21 d. Gas exchanges, milk yield, feces and urine excretions were measured in open-circuit respiratory chambers. The results indicated that L-REI cows had higher methane yields (22.6 vs. 20.4 g/kg DM intake) and derived more energy (energy balance - 36.6 vs. - 16.9 MJ/d) and protein (N balance - 6.6 vs. 18.8 g/d) from the tissues to support similar milk yields compared to H-REI cows. Nutrient intake and digestibility were not affected by REI, and there were no interactions between REI and diet. Milk yield, milk production efficiency, and milk composition were not affected by REI except for milk urea concentration that was higher for L-REI cows (14.1 vs. 10.8 mg/100 ml). The rumen and fecal microbiota community structure and function were associated with both the diet and REI, but the diet effect was more pronounced. The current study identified several physiological mechanisms underlying the differences between high and low REI cows, but further studies are needed to distinguish the quantitative role of each mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770142PMC
http://dx.doi.org/10.1038/s41598-024-51300-7DOI Listing

Publication Analysis

Top Keywords

residual energy
8
energy intake
8
methane emissions
8
dairy cows
8
h-rei cows
8
milk yield
8
l-rei cows
8
rei diet
8
cows
7
rei
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!