Platinum supramolecular complexes based on photosensitizers have garnered great interest in photodynamic therapy (PDT) due to Pt (II) centers as chemotherapeutic agents to eliminate tumor cells completely, which greatly improve the antitumor efficacy of PDT. However, in comparison to precursor photosensitizer ligand, the formed platinum supramolecular complexes typically exhibit inferior outcomes in terms of reactive oxygen species (ROS) generation. How to boost ROS generation in the formed platinum supramolecular complexes for enhanced PDT is an enticing yet highly challenging task. Here we report a Pt-coordination-based dimeric photosensitizer complex (Cz-BTZ-Py)Pt(OTf). It is found that comparing with photosensitizer ligand Cz-BTZ-Py, the formed supramolecular complex exhibit redshifts of absorption wavelength as well as enhanced ROS generation efficiency. Moreover, type-I ROS generation (O⋅) is produced in the formed platinum supramolecular complexes mainly due to a reduced energy gap ΔE resulting from exciton coupling between two photosensitizer ligands. And type-I ROS (O⋅) generation significantly amplifies the photodynamic therapy (PDT) outcomes. In vitro evaluation shows excellent photochemotherapy performance of (Cz-BTZ-Py)Pt(OTf) nanoparticles. We anticipate this work would provide a novel approach to design type-I photosensitizers for efficient PDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202304113 | DOI Listing |
Chempluschem
January 2025
University of Wroclaw: Uniwersytet Wroclawski, Chemistry, 14 F. Joliot-Curie 14, 50383, Wroclaw, POLAND.
The skeletal editing approach represents a paradigm shift in organic synthesis by directly targeting the molecular skeleton instead of relying on often long and complicated series of organic transformations. Recent advancements in nitrogen atom deletion reactions have enabled unprecedented late-stage, precise modifications of bioactive compounds and complex natural products, influencing a seemingly distant field such as supramolecular chemistry. In a recent contribution, the Leigh group demonstrated the extrusion of a nitrogen atom from an axle of a [2]rotaxane, extending the applicability of molecular editing to complex, mechanically interlocked architectures.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Institute for Physical and Theoretical Chemistry, University of Bremen, Bremen, Germany.
The eXtended Hydrostatic Compression Force Field (X-HCFF) is a mechanochemical approach in which a cavity is used to exert hydrostatic pressure on a target system. The cavity used in this method is set up to represent the van der Waals (VDW) surface of the system by joining spheres sized according to the respective atomic VDW radii. The size of this surface can be varied via a scaling factor, and it can be shown that the compression forces exerted in X-HCFF in its current implementation depend on this factor.
View Article and Find Full Text PDFChemistry
January 2025
university of science and technology of china, School of Nuclear Science and Technology, China, 230029, HEFEI, CHINA.
The final outcomes of supramolecular assembly are determined by the pathways and the formation of intermediates during the assembly process. We studied pathway complexity involving two consecutive pathways in supramolecular polymerization of naphthalene-diimide (NDI) derivative molecule. Depending on preparation methods anisotropic aggregates of J-type nanorods (Agg I) or more flexible H-type nanofibers (Agg II) are obtained from the identical initial state in solution of methyl cyclohexane (MCH) or MCH/CHCl3 mixtures.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.
View Article and Find Full Text PDFMolecules
January 2025
Academy of Interdisciplinary Studies on Intelligent Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
Peptide-based therapy is appealing in modern medicine owing to its high activity and excellent biocompatibility. Poor stability, leading to unacceptable bioavailability, severely constrains its clinical application. Here, we proposed a general supramolecular approach for improving the plasma resistance of a commercially available peptide agent, thymopentin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!