Although the research on nanozymes has attracted widespread attention in recent years, the development of highly active and multifunctional nanozymes remains a challenge. Here, a bifunctional AMP-Cu nanozyme with laccase- and catecholase-like activities was successfully prepared at room temperature with Cu as the metal ion and adenosine-5'-monophosphate (AMP) as the ligand molecule. Based on the excellent catalytic performance of AMP-Cu, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six common phenolic compounds at low concentrations. This strategy simplifies the construction of sensor array and demonstrates the capacity to obtain multidimensional data from a single material. Finally, with the assistance of smartphones and homemade dark boxes, a portable on-site detection method for phenolic compounds was developed. This work would contribute to the development of portable sensors and the highly efficient identification of phenolic compounds in complex samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.342133DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
16
sensor array
12
array constructed
8
reaction kinetics
8
identification phenolic
8
smartphone-assisted nanozyme
4
nanozyme sensor
4
constructed based
4
based reaction
4
kinetics discrimination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!