Spatiotemporal control of DNAzyme activity for fluorescent imaging of telomerase RNA in living cells.

Anal Chim Acta

College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, 450001, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. Electronic address:

Published: January 2024

Background: Human telomerase is a ribonucleoprotein complex that includes proteins and human telomerase RNA (hTR). Emerging evidence suggested that the expression level of hTR was high related with the development of tumor, so it is important to accurately detect the content of hTR. Optical control of DNAzyme activity shows a promising strategy for precise biosensing, biomedical imaging and modulation of biological processes. Although DNAzyme-based sensors can be controlled spatiotemporally by light, its application in the detection of hTR in living cells is still rare. Therefore, designing DNAzyme activity spatiotemporal controllable sensors for hTR detection is highly needed.

Results: We developed a UV light-activated DNAzyme-based nanoprobe for spatially accurate imaging of intracellular hTR. The proposed nanoprobe was named MDPH, which composed of an 8-17 DNAzyme (D) inactivated by a protector strand (P), a substrate strand (H), and MnO nanosheets. The MnO nanosheets can enhance the cellular uptake of DNA strands, so that MDPH probe can enter cells autonomously through endocytosis. Under the high concentration of GSH in cancer cells, MnO nanosheets can self-generate cofactors to maintain the catalytic activity of DNAzyme. When exposing UV light and in presence of target hTR, DNAzyme could cleave substrate H, resulting in the recovery of fluorescence of the system. The cells imaging results show that MDPH probe could be spatiotemporally controlled to image endogenous hTR in cancer cells.

Significance: With this design, telomerase RNA-specific fluorescent imaging was achieved by MDPH probe in both cancer and normal cells. Our probe made a promising new platform for spatiotemporal controllable intracellular hTR monitoring. This current method can be applied to monitor a variety of other biomarkers in living cells and perform medical diagnosis, so it may has broad applications in the field of medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.342085DOI Listing

Publication Analysis

Top Keywords

dnazyme activity
12
living cells
12
mno nanosheets
12
mdph probe
12
htr
9
control dnazyme
8
fluorescent imaging
8
telomerase rna
8
human telomerase
8
spatiotemporal controllable
8

Similar Publications

SequenceCraft: machine learning-based resource for exploratory analysis of RNA-cleaving deoxyribozymes.

BMC Bioinformatics

January 2025

International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, Russian Federation, 191002.

Background: Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate.

View Article and Find Full Text PDF

Photomodulated Transient Catalytic Constitutional Dynamic Networks and Reaction Circuits.

Angew Chem Int Ed Engl

January 2025

The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus, Institute of Chemistry, Givat Ram, 91904, Jerusalem, ISRAEL.

A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ = 365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.

View Article and Find Full Text PDF

Near-infrared DNA-AgNCs enzyme-free fluorescence biosensing for microRNA imaging in living cells based on self-replicating catalytic hairpin self-assembly.

Int J Biol Macromol

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:

In this work, a fast signal amplification system mediated by self-replicating catalytic hairpin self-assembly (SCHA) was established for microRNA-155 using near-infrared DNA-Ag Nanoclusters (DNA-AgNCs) as fluorescence signal output. Among them, two fission target-like DNA sequences are merged into two hairpin DNA H1 and H2, and the AgNCs template sequence is designed at the sticky end of H1 and H2. The target can be recycled in the system to form a double-stranded DNA structure (H1-H2), which will detach the H1/H2-AgNCs from the surface of the polypyrrole nanoparticles (PPy NPs) and cause the near-infrared fluorescence signal of DNA-AgNCs to be restored.

View Article and Find Full Text PDF

Redox-stimulated catalytic DNA circuit for high-fidelity imaging of microRNA and in situ interpretation of the relevant regulatory pathway.

Biosens Bioelectron

December 2024

Department of Gastroenterology, Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China. Electronic address:

Biomolecules play essential roles in regulating the orderly progression of biochemical reaction networks. DNA-based biocircuits supplement an attractive and ideal approach for the visual imaging of endogenous biomolecules, yet their sensing performance is commonly encumbered by the undesired signal leakage. To solve this issue, here we proposed a glutathione (GSH)-activated DNA circuit for achieving the spatio-selective microRNA imaging through the successive response of a GSH-specific activation procedure and a non-enzymatic catalytic signal amplification procedure.

View Article and Find Full Text PDF

Assignment of the N-terminal domain of mouse cGAS.

Biomol NMR Assign

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!