Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nicotinamide Adenine Dinucleotide (NAD+), a coenzyme, is ubiquitously distributed and serves crucial functions in diverse biological processes, encompassing redox reactions, energy metabolism, and cellular signalling. This review article explores the intricate realm of NAD + metabolism, with a particular emphasis on the complex relationship between its structure, function, and the pivotal enzyme, Nicotinate Nucleotide Adenylyltransferase (NNAT), also known as nicotinate mononucleotide adenylyltransferase (NaMNAT), in the process of its biosynthesis. Our findings indicate that NAD + biosynthesis in humans and bacteria occurs via the same de novo synthesis route and the pyridine ring salvage pathway. Maintaining NAD homeostasis in bacteria is imperative, as most bacterial species cannot get NAD+ from their surroundings. However, due to lower sequence identity and structurally distant relationship of bacteria, including E. faecium and K. pneumonia, to its human counterpart, inhibiting NNAT, an indispensable enzyme implicated in NAD + biosynthesis, is a viable alternative in curtailing infections orchestrated by E. faecium and K. pneumonia. By merging empirical and computational discoveries and connecting the intricate NAD + metabolism network with NNAT's crucial role, it becomes clear that the synergistic effect of these insights may lead to a more profound understanding of the coenzyme's function and its potential applications in the fields of therapeutics and biotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2024.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!