In this study, the sorption properties of ciprofloxacin, ofloxacin, sulfamethoxazole, and trimethoprim on biochar derived from macadamia nut shells were investigated. The raw biomass was pyrolyzed at 600 °C to create a highly porous material with a surface area of 392 m g. The produced biochar was found to be a valuable material for both environmental remediation and carbon sequestration due to its high carbon and oxygen content. The sorption properties of four antibiotics on the produced biochar were compared using Bayesian nonlinear regression based on second-order kinetics and the Langmuir model. The Bayesian estimation successfully compared the adsorption coefficients of the antibiotics, which can be directly visualized through graphical grammar using the probability density distribution. The results demonstrated the ability of macadamia nut shell biochar to remove antibiotics from water at neutral pH, and this material has the potential to be used for treating other emerging contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.130281 | DOI Listing |
Sci Total Environ
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Fenton reactions, commonly employed in environmental remediation, decompose H₂O₂ using Fe⁺ to generate free radicals. However, the efficiency is often limited by the slow conversion of Fe³⁺ to Fe⁺. In this study, we synthesize zero-valent iron nanoparticles (nZVI) via a green, plant extract-mediated reduction method, resulting in nZVI coated with a reductive polyphenolic layer that enhances Fe³⁺/Fe⁺ cycling.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Bioresour Bioprocess
December 2024
Production Systems Unit, Grasslands and Sustainable Agriculture Group, Natural Resources Institute Finland (Luke), Maaninka, FI-71750, Finland.
Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!