Structural properties and biological activities of the extracellular polysaccharide of Bacillus subtilis LZ13-4.

Int J Biol Macromol

College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Liaoning 110866, P.R. China. Electronic address:

Published: February 2024

AI Article Synopsis

  • - The study isolated and characterized two fractions of Bacillus subtilis extracellular polysaccharides (BSPS), named BSPS-1 and BSPS-2, which differ in their sugar composition and molecular weights.
  • - BSPS-1 showed higher antioxidant activity compared to BSPS-2, achieving a 93.55% clearance of ABTS• and demonstrating concentration-dependent effects.
  • - Both BSPS-1 and BSPS-2 significantly inhibited the proliferation of HepG2 cells, promoting apoptosis; the effects were also dose-dependent, with particular growth inhibition observed in different cell cycle phases.

Article Abstract

The remarkable functional characteristics of Bacillus subtilis extracellular polysaccharides (BSPS) are of great interest. Therefore, in the present study, BSPS was isolated and characterized to obtain two fractions, BSPS-1 and BSPS-2, respectively, and to investigate their biological activities. BSPS-1 contained fructose, glucose, and galactose (molar ratio: 25.27:43.37:31.36), while BSPS-2 contained fructose with only trace amounts of glucose, galactose, and mannose (molar ratio: 55.08:19.03:19.21:6.68), and their respective average molecular weights were 16.9 kDa and 202.67 kDa. With a 93.55 % clearance of ABTS• at a concentration of 2 mg/mL of BSPS-1, the antioxidant activity revealed that BSPS-1 had greater antioxidant activity than BSPS-2 and that both were concentration-dependent. The inhibitory effect on HepG2 cells demonstrated that BSPS-1 and BSPS-2 significantly inhibited the proliferation of HepG2 and increased the expression of apoptotic proteins, causing apoptosis. The inhibition rate on HepG2 cells was dose-dependent and reached 52.7 % and 40.3 % after 48 h of action. BSPS-2 and 800 μg/mL BSPS-1 growth was inhibited in the G1/G0 phase, while 200 and 400 μg/mL BSPS-1 growth was inhibited in the S phase. In conclusion, the study of the BSPS's structure and properties can offer a theoretical foundation for real-world industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.129176DOI Listing

Publication Analysis

Top Keywords

biological activities
8
bacillus subtilis
8
bsps-1 bsps-2
8
contained fructose
8
glucose galactose
8
molar ratio
8
antioxidant activity
8
hepg2 cells
8
bsps-1 growth
8
growth inhibited
8

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.

View Article and Find Full Text PDF

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice.

Nat Commun

December 2024

State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.

The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.

View Article and Find Full Text PDF

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!