Background: Wastewater surveillance for SARS-CoV-2 has been used widely in the United States for indication of community incidence during the COVID-19 pandemic, but less is known about the feasibility of its use on a building level in nursing homes to provide early warning and prevent transmission.
Methods: A pilot study was conducted at 8 Department of Veterans Affairs nursing homes across the United States to examine operational feasibility. Wastewater from the participating facilities was sampled daily during the week for 6 months (January 11, 2021-July 2, 2021) and analyzed for SARS-CoV-2 genetic material. Wastewater results were compared to new SARS-CoV-2 infections in nursing home residents and employees to determine if wastewater surveillance could provide early warning of a COVID-19-positive occupant.
Results: All 8 nursing homes had wastewater samples positive for SARS-CoV-2 and COVID-19-positive occupants. The sensitivity of wastewater surveillance for early warning of COVID-19-positive residents was 60% (3/5) and for COVID-19-positive employees was 46% (13/28).
Conclusions: Wastewater surveillance may provide additional information for reinforcing infection control practices and lead to preventing transmission in a setting with high-risk residents. The low sensitivity for early warning in this real-world pilot highlights limitations and insights for applicability in buildings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajic.2023.12.016 | DOI Listing |
Microorganisms
December 2024
Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
The surging prevalence rates of ESBL-producing (ESBL-Ec) pose a serious threat to public health. To date, most research on drug-resistant bacteria and genes has focused on livestock and poultry breeding areas, hospital clinical areas, natural water environments, and wastewater treatment plants. However, few studies have been conducted on drug-resistant bacteria in vegetable cultivation.
View Article and Find Full Text PDFMicroorganisms
December 2024
World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
The world has gone through the COVID-19 pandemic and has now returned to normalcy. We reviewed the strategies and public health actions conducted in Hong Kong during the COVID-19 pandemic, and reflected on the lessons learned, which are potentially useful in the fight against antimicrobial resistance (AMR). We recommended extending wastewater surveillance for AMR, apart from SARS-CoV2.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany.
Wastewater-based surveillance (WBS) is a proven tool for monitoring population-level infection events. Wastewater contains high concentrations of inhibitors, which contaminate the total nucleic acids (TNA) extracted from these samples. We found that TNA extracts from raw influent of Berlin wastewater treatment plants contained highly variable amounts of inhibitors that impaired molecular analyses like dPCR and next-generation sequencing (NGS).
View Article and Find Full Text PDFMicroorganisms
November 2024
Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada.
Wastewater-based surveillance (WBS) has been widely used to track SARS-CoV-2 as well as many other viruses in communities during the COVID pandemic and post-pandemic. However, it is still not clear how temperature and storage time would influence the stability of viruses in wastewater. In this study, we assessed the stability of SARS-CoV-2, pepper mild mottle virus (PMMoV), influenza viruses A (IAV) and B (IBV), respiratory syncytial virus (RSV), and enteric viruses in raw wastewater stored at room temperature, 4 °C, and -20 °C for 3 and 6 days.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan.
Antimicrobial resistance is a major global concern and economic threat, necessitating a reliable monitoring approach to understand its frequency and spread via the environment. Hospital wastewater serves as a critical reservoir for antimicrobial-resistant organisms; however, its role in resistance gene distribution and dissemination remains poorly understood. This study integrates metagenomic and metatranscriptomic analyses, elucidating the dynamics of antimicrobial resistance in hospital wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!