AI Article Synopsis

  • Reoperation is frequently needed for patients with degenerative lumbar spine diseases, leading to worse outcomes over time, and LPC in cerebrospinal fluid may help identify neuropathic pain related to lumbar spinal canal stenosis (LSCS).
  • In a multi-site study, researchers collected CSF from patients with LSCS and persistent spinal pain syndrome to analyze six LPC species using advanced mass spectrometry techniques.
  • Results showed that LPC levels were significantly higher in the LSCS group, with four species providing high sensitivity for distinguishing LSCS, suggesting LPC measurement could enhance current diagnostic protocols and assist surgical decision-making.

Article Abstract

Background: Reoperation, sometimes multiple, is common with progressively worse outcomes in patients with degenerative lumbar spine diseases. Lysophosphatidylcholine (LPC), a precursor of lysophosphatidic acid, in the cerebrospinal fluid (CSF) is a possible biomarker for neuropathic pain and discriminating neuropathic pain caused by lumbar spinal canal stenosis (LSCS) from other etiologies. This study aimed to explore this possible use of LPC species in the CSF.

Methods: Patients with LSCS (n = 137) and persistent spinal pain syndrome (n = 22) were subjected in this multi-site observational study. The CSF was collected by lumbar puncture. Using liquid chromatography-tandem mass spectrometry, we measured 6 LPC species, (16:0), (18:0), (18:1), (18:2), (20:4), and (22:6), in the CSF. We compared the LPC values between the groups and determined the cutoff levels that could efficiently discriminate the groups with high accuracy.

Results: The levels of all measured LPC species were significantly higher in the LSCS group than the persistent spinal pain syndrome group. Four LPC species demonstrated more than 0.80 area under the curve obtained from the receiver operating characteristic curve analysis. Although the specificity of cutoff levels for the 6 LPC species was low to moderate, their sensitivity was consistently high.

Conclusions: The existing diagnostic protocols combining physical examinations and morphological imaging studies for lumbar spinal pain have limited sensitivity. Measuring LPC species in the CSF is a promising objective laboratory test and could be suitable for detecting the presence of lumbar spinal stenosis and can help indications for surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2023.12.148DOI Listing

Publication Analysis

Top Keywords

lpc species
24
lumbar spinal
12
spinal pain
12
cerebrospinal fluid
8
lumbar spine
8
lpc
8
neuropathic pain
8
persistent spinal
8
pain syndrome
8
measured lpc
8

Similar Publications

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Sperm motility is a key factor influencing male fertility and is associated with metabolic and lipid profiles across species. The aim of this study was to investigate the relationship between sperm motility and the seminal plasma lipid profile in Simmental bulls, and to identify key lipids potentially influencing sperm motility. Semen samples were collected from 26 healthy Simmental bulls with an average age of 4.

View Article and Find Full Text PDF

A single microfluidic device for multi-omics analysis sample preparation.

Lab Chip

January 2025

Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.

Combining different "omics" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples.

View Article and Find Full Text PDF

Introduction: It is well acknowledged that lipids assume a critical role in oocyte maturation and early embryonic metabolism, this study aimed to evaluate the relationship between the lipid composition of plasma and follicular fluid (FF), and the consequences of embryonic development. This study compared the lipidomic profiles of paired plasma and FF samples obtained from sixty-five Chinese women who underwent assisted reproductive technology (ART) treatments.

Methods: Non-targeted lipidomics analysis.

View Article and Find Full Text PDF

Evaluation of Lipid Changes During the Drying Process of by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)-Based Lipidomics Technique.

J Fungi (Basel)

December 2024

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China.

Comprehensive analysis of the lipid content in samples is essential for optimizing their effective use. Understanding the lipid profile can significantly enhance the application of this valuable fungus across various fields, including nutrition and medicine. However, to date, there is limited knowledge regarding the effects of different drying methods on the quality of lipids present in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!