The allergen-IgE interaction is essential for the genesis of allergic responses, yet investigation of the molecular basis of these interactions is in its infancy. Precision engineering has unveiled the molecular features of allergen-antibody interactions at the atomic level. High-resolution technologies, including x-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, determine allergen-antibody structures. X-ray crystallography of an allergen-antibody complex localizes in detail amino acid residues and interactions that define the epitope-paratope interface. Multiple structures involving murine IgG mAbs have recently been resolved. The number of amino acids forming the epitope broadly correlates with the epitope area. The production of human IgE mAbs from B cells of allergic subjects is an exciting recent development that has for the first time enabled an actual IgE epitope to be defined. The biologic activity of defined IgE epitopes can be validated in vivo in animal models or by measuring mediator release from engineered basophilic cell lines. Finally, gene-editing approaches using the Clustered Regularly Interspaced Short Palindromic Repeats technology to either remove allergen genes or make targeted epitope engineering at the source are on the horizon. This review presents an overview of the identification and validation of allergenic epitopes by precision engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939758PMC
http://dx.doi.org/10.1016/j.jaci.2023.12.017DOI Listing

Publication Analysis

Top Keywords

precision engineering
12
allergenic epitopes
8
x-ray crystallography
8
engineering localization
4
localization validation
4
validation modification
4
modification allergenic
4
epitopes allergen-ige
4
allergen-ige interaction
4
interaction essential
4

Similar Publications

Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways.

Proteomics

January 2025

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

Int J Mol Med

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.

View Article and Find Full Text PDF

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.

View Article and Find Full Text PDF

Background: Alterations in cellular metabolism affect cancer survival and can manifest in metrics of body composition. We investigated the effects of various body composition metrics on survival in patients with glioblastoma (GBM).

Methods: We retrospectively analyzed patients who had an abdominal and pelvic computed tomography (CT) scan performed within 1 month of diagnosis of GBM (178 participants, 102 males, 76 females, median age: 62.

View Article and Find Full Text PDF

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!