Transfer RNA modifications and cellular thermotolerance.

Mol Cell

Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. Electronic address:

Published: January 2024

RNA molecules are modified post-transcriptionally to acquire their diverse functions. Transfer RNA (tRNA) has the widest variety and largest numbers of RNA modifications. tRNA modifications are pivotal for decoding the genetic code and stabilizing the tertiary structure of tRNA molecules. Alternation of tRNA modifications directly modulates the structure and function of tRNAs and regulates gene expression. Notably, thermophilic organisms exhibit characteristic tRNA modifications that are dynamically regulated in response to varying growth temperatures, thereby bolstering fitness in extreme environments. Here, we review the history and latest findings regarding the functions and biogenesis of several tRNA modifications that contribute to the cellular thermotolerance of thermophiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2023.11.041DOI Listing

Publication Analysis

Top Keywords

trna modifications
16
transfer rna
8
rna modifications
8
cellular thermotolerance
8
modifications
6
trna
6
modifications cellular
4
thermotolerance rna
4
rna molecules
4
molecules modified
4

Similar Publications

The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect.

View Article and Find Full Text PDF

Background: Tectorigenin (TEC) is a monomer of anthocyanin, which we found exhibits hepatoprotective effects. tRNA-derived fragments (tRFs) and ferroptosis play important roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Recent discoveries have revealed that histone lactylation and acetylation play a crucial role in connecting cellular metabolism and epigenetic regulation through post-translational modification of histones.

View Article and Find Full Text PDF

RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis.

View Article and Find Full Text PDF

Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C.

View Article and Find Full Text PDF

Fragment-based screening is an efficient method for early-stage drug discovery. In this study, we aimed to create a fragment library optimized for producing high hit rates against RNA targets. RNA has historically been an underexplored target, but recent research suggests potential for optimizing small molecule libraries for RNA binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!