Coupling of polyhydroxybutyrate and zero-valent iron for enhanced treatment of nitrate pollution within the Permeable Reactive Barrier and its downgradient aquifer.

Water Res

Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.

Published: February 2024

Permeable Reactive Barriers (PRBs) have been utilized for mitigating nitrate pollution in groundwater systems through the use of solid carbon and iron fillers that release diverse nutrients to enhance denitrification efficiency. We conduct laboratory column tests to evaluate the effectiveness of PRBs in remediating nitrate pollution both within the PRB and in the downgradient aquifer. We use an iron-carbon hydrogel (ICH) as PRB filler, which has different weight ratios of polyhydroxybutyrate (PHB) and microscale zero-valent iron (mZVI). Results reveal that denitrification in the downgradient aquifer accounts for at least 19.5 % to 32.5 % of the total nitrate removal. In the ICH, a higher ratio of PHB to mZVI leads to higher contribution of the downgradient aquifer to nitrate removal, while a lower ratio results in smaller contribution. Microbial community analysis further reveals that heterotrophic and mixotrophic bacteria dominate in the downgradient aquifer of the PRB, and their relative abundance increases with a higher ratio of PHB to mZVI in the ICH. Within the PRB, autotrophic and iron-reducing bacteria are more prevalent, and their abundance increases as the ratio of PHB to mZVI in the ICH decreases. These findings emphasize the downgradient aquifer's substantial role in nitrate removal, particularly driven by dissolved organic carbon provided by PHB. This research holds significant implications for nutrient waste management, including the prevention of secondary pollution, and the development of cost-effective PRBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.121060DOI Listing

Publication Analysis

Top Keywords

downgradient aquifer
20
nitrate pollution
12
nitrate removal
12
ratio phb
12
phb mzvi
12
zero-valent iron
8
permeable reactive
8
ich prb
8
higher ratio
8
abundance increases
8

Similar Publications

The potential performance of a hypothetical colloidal-activated carbon (CAC) in situ remedy for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater in coastal zones was evaluated using estimated hydrogeologic and geochemical parameters for a coastal site in the United States. With these parameters, a reactive transport model (ISR-MT3DMS) was used to assess the effects of tidal fluctuations and near-shore geochemistry on CAC performance. The average near-shore ionic strength of 84 mM at the site was conservatively estimated to result in an increase in the adsorption of PFOA to CAC by about 50% relative to non-coastal sites with ionic strength <10 mM.

View Article and Find Full Text PDF

Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer.

Biodegradation

November 2024

Biotechnology Development and Applications Group, APTIM, 17 Princess Road, Lawrenceville, NJ, 08648, USA.

Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA.

View Article and Find Full Text PDF

Onsite wastewater systems (OWSs) can be significant sources of nutrients and E. coli to water resources, potentially resulting in water quality degradation especially during times of malfunction. An OWS is considered malfunctioning when septic tank effluent is discharged into drainfield trenches during periods when there is insufficient separation to groundwater (<30 cm), when wastewater upwells to the surface, or when backup of wastewater into the tank or home occurs.

View Article and Find Full Text PDF

Contaminant mass discharge (CMD) estimation involves combining multilevel concentration and flow measurements to quantify the contaminant mass passing through a control plane downgradient of a point source. However, geological heterogeneities and limited data introduce uncertainties that complicate CMD estimation and risk assessment. Although CMD is increasingly used in groundwater management, methods for quantifying and handling these uncertainties are still needed.

View Article and Find Full Text PDF

Environmental fate and transport of PFAS in wastewater treatment plant effluent discharged to rapid infiltration basins.

Water Res

November 2024

Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA.

Fate and transport of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plant (WWTP) effluent discharged to rapid infiltration basins (RIBs) is investigated using data from 26 WWTPs in Michigan, USA. PFAS were found to accumulate in groundwater downgradient from RIBs with median groundwater-effluent enrichment factors for ten commonly detected, terminal-form perfluoroalkyl acids (PFAAs) ranging from 1.3 to 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!