Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.

Bioelectrochemistry

Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany. Electronic address:

Published: June 2024

Pseudomonas aeruginosa phenazines contribute to survival under microaerobic and anaerobic conditions by extracellular electron discharge to regulate cellular redox balances. This electron discharge is also attractive to be used for bioelectrochemical applications. However, elements of the respiratory pathways that interact with phenazines are not well understood. Five terminal oxidases are involved in the aerobic electron transport chain (ETC) of Pseudomonas putida and P. aeruginosa. The latter bacterium also includes four reductases that allow for denitrification. Here, we explored if phenazine-1-carboxylic acid interacts with those elements to enhance anodic electron discharge and drive bacterial growth in oxygen-limited conditions. Bioelectrochemical evaluations of terminal oxidase-deficient mutants of both Pseudomonas strains and P. aeruginosa with stimulated denitrification pathways indicated no direct beneficial interaction of phenazines with ETC elements for extracellular electron discharge. However, the single usage of the Cbb3-2 oxidase increased phenazine production, electron discharge, and cell growth. Assays with purified periplasmic cytochromes NirM and NirS indicated that pyocyanin acts as their electron donor. We conclude that phenazines play an important role in electron transfer to, between, and from terminal oxidases under oxygen-limiting conditions and their modulation might enhance EET. However, the phenazine-anode interaction cannot replace oxygen respiration to deliver energy for biomass formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2023.108636DOI Listing

Publication Analysis

Top Keywords

electron discharge
20
electron
9
electron transfer
8
elements respiratory
8
respiratory pathways
8
pseudomonas putida
8
pseudomonas aeruginosa
8
extracellular electron
8
terminal oxidases
8
pseudomonas
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!