TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction.

Comput Methods Programs Biomed

Department of Data and Computing, Northeast Agricultural University, Harbin, PR China; School of Plant Protection, Northeast Agricultural University, Harbin, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China. Electronic address:

Published: February 2024

Background And Objective: Recent studies have emphasized the significance of computational in silico drug-target binding affinity (DTA) prediction in the field of drug discovery and drug repurposing. However, existing DTA prediction approaches suffer from two major deficiencies that impede their progress. Firstly, while most methods primarily focus on the feature representations of drug-target binding affinity pairs, they fail to consider the long-distance relationships of proteins. Furthermore, many deep learning-based DTA predictors simply model the interaction of drug-target pairs through concatenation, which hampers the ability to enhance prediction performance.

Methods: To address these issues, this study proposes a novel framework named TransVAE-DTA, which combines the transformer and variational autoencoder (VAE). Inspired by the early success of VAEs, we aim to further investigate the feasibility of VAEs for drug structure encoding, while utilizing the transformer architecture for target feature representation. Additionally, an adaptive attention pooling (AAP) module is designed to fuse the drug and target encoded features. Notably, TransVAE-DTA is proven to maximize the lower bound of the joint likelihood of drug, target, and their DTAs.

Results: Experimental results demonstrate the superiority of TransVAE-DTA in drug-target binding affinity prediction assignments on two public Davis and KIBA datasets.

Conclusions: In this research, the developed TransVAE-DTA opens a new avenue for engineering drug-target interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.108003DOI Listing

Publication Analysis

Top Keywords

drug-target binding
16
binding affinity
16
transformer variational
8
variational autoencoder
8
affinity prediction
8
dta prediction
8
drug target
8
drug-target
6
transvae-dta
5
prediction
5

Similar Publications

Tetraspanin CD81 serves as a functional entry factor for porcine circovirus type 2 infection.

J Virol

December 2024

Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease, clinically resulting in immunosuppression and co-infections with other pathogens in infected pigs. The mechanism of PCV2 infection remains unclear. In this study, we firstly found that the tetraspanin CD81 in PK-15 cells interacts with PCV2 Cap protein by using virus overlay protein-binding assay combined with mass spectrometry.

View Article and Find Full Text PDF

This study aims to investigate the effect and mechanism of cyclosporine A (CsA) on paclitaxel-resistant prostate cancer cells. Paclitaxel-resistant prostate cancer cell lines were established by gradual increment method. The proliferation of cells was tested using MTT and colony formation assay.

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Facilitating microglia M2 polarization alleviates p-Synephrine-induced depressive-like behaviours in CSDS mice via the 5-HT6R-FYN-ERK1/2 pathway.

Int Immunopharmacol

December 2024

State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China. Electronic address:

In recent years, modulation of microglial phenotype transformation has emerged as a promising strategy for treating central nervous system disorders. Aurantii Fructus Immaturus (Zhishi), a traditional Chinese medicine with versatile applications, contains p-Synephrine (p-SYN) as its principal bioactive compound, recognized for its anti-inflammatory efficacy. However, the molecular mechanisms underlying these effects remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!