Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The paper concerns the numerical design of novel three-dimensional titanium scaffolds with complex open-porous structures and desired mechanical properties for the Powder Bed Fusion using Laser Beam (PBF-LB). The 60 structures with a broad range of porosity (38-78%), strut diameters (0.70-1.15 mm), and coefficients of pore volume variation, CV(V), 0.35-5.35, were designed using the Laguerre-Voronoi tessellations (LVT). Their Young's moduli and Poisson's ratios were calculated using Finite Element Model (FEM) simulations. The experimental verification was performed on the representative designs additively manufactured (AM) from commercially pure titanium (CP Ti) which, after chemical polishing, were subjected to uniaxial compression tests. Scanning Electron Microscopy (SEM) observations and microtomography (μ-CT) confirmed the removal of the support structures and unmelted powder particles. PBF-LB structures after chemical polishing were in close agreement with the CAD models' dimensions having 4-12% more volume. The computational and experimental results show that elastic properties were predicted in very close agreement for the low CV(V), and with even 30-40% discrepancies for CV(V) higher than 4.0, mainly due to PBF-LB scaffold architecture drawbacks rather than CAD inaccuracy. Our research demonstrates the possibility of designing the open-porous scaffolds with pore volume diversity and tuning their elastic properties for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.106359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!