A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantifying the immediate post-implantation strain field of cadaveric tibiae implanted with cementless tibial trays: A time-elapsed micro-CT and digital volume correlation analysis during stair descent. | LitMetric

Primary stability, the mechanical fixation between implant and bone prior to osseointegration, is crucial for the long-term success of cementless tibial trays. However, little is known about the mechanical interplay between the implant and bone internally, as experimental studies quantifying internal strain are limited. This study employed digital volume correlation (DVC) to quantify the immediate post-implantation strain field of five cadaveric tibiae implanted with a commercially available cementless titanium tibial tray (Attune, DePuy Synthes). The tibiae were subjected to a five-step loading sequence (0-2.5 bodyweight, BW) replicating stair descent, with concomitant time-elapsed micro-CT imaging. With progressive loads, increased compression of trabecular bone was quantified, with the highest strains directly under the posterior region of the tibial tray implant, dissipating with increasing distance from the bone-implant interface. After load removal of the last load step (2.5BW), residual strains were observed in all of the five tibiae, with residual strains confined within 3.14 mm from the bone-implant interface. The residual strain is reflective of the observed initial migration of cementless tibial trays reported in clinical studies. The presence of strains above the yield strain of bone accepted in literature suggests that inelastic properties should be included within finite element models of the initial mechanical environment. This study provides a means to experimentally quantify the internal strain distribution of human tibia with cementless trays, increasing the understanding of the mechanical interaction between bone and implant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106347DOI Listing

Publication Analysis

Top Keywords

cementless tibial
12
tibial trays
12
post-implantation strain
8
strain field
8
field cadaveric
8
cadaveric tibiae
8
tibiae implanted
8
time-elapsed micro-ct
8
digital volume
8
volume correlation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!