Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: With the growing aging population and longer life expectancy, periodontitis and tooth loss have become major health concerns. The gut microbiota, as a key regulator in bone homeostasis, has gathered immense interest. Baicalin, a flavonoid compound extracted from Scutellaria baicalensis Georgi, has shown antioxidant and anti-inflammatory activities.
Purpose: This study investigated, for the first time, the protective mechanism of baicalin against alveolar bone inflammatory resorption in aging mice by regulating intestinal flora and metabolites, as well as intestinal barrier function.
Methods: A ligature-induced periodontitis model was established in d-galactose (D-gal)-induced aging mice, and baicalin was administered at different dosages for 13 weeks. Body weight was measured weekly. The antioxidant and anti-inflammatory activity of baicalin were evaluated using serum superoxide dismutase (SOD), malonaldehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels. The immune capability was assessed by thymus and spleen indices. Histopathological changes were observed in the heart, liver, ileum, and periodontal tissues. Alveolar bone absorption of maxillary second molars was examined, and osteoclasts were counted by tartrate-resistant acid phosphatase (TRAP) staining. Furthermore, fecal samples were analyzed using 16S rRNA sequencing and non-targeted metabolomics to identify differences in intestinal bacterial composition and metabolites.
Results: Baicalin exhibited anti-aging properties, as evidenced by increased SOD activity and decreased levels of MDA, IL-6, and TNF-α in serum compared to the control group. Baicalin also ameliorated alveolar bone loss in the d-gal-induced aging-periodontitis group (p < 0.05). Furthermore, baicalin restored ileal permeability by up-regulating the expression of ZO-1 and occludin in aging-periodontitis groups (p < 0.05). Alpha diversity analysis indicated that baicalin-treated mice harbored a higher diversity of gut microbe. PCoA and ANOSIM results revealed significant dissimilarity between groups. The Firmicutes/Bacteroidetes (F/B) ratio, which decreased in periodontitis mice, was restored by baicalin treatment. Additionally, medium-dosage baicalin promoted the production of beneficial flavonoids, and enriched short-chain fatty acids (SCFAs)-producing bacteria.
Conclusion: Intestinal homeostasis is a potential avenue for treating age-related alveolar bone loss. Baicalin exerts anti-inflammatory, antioxidant, and osteo-protective properties by regulating the gut microbiota and metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.155233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!