The Hopfield model is a paradigmatic model of neural networks that has been analyzed for many decades in the statistical physics, neuroscience, and machine learning communities. Inspired by the manifold hypothesis in machine learning, we propose and investigate a generalization of the standard setting that we name random-features Hopfield model. Here, P binary patterns of length N are generated by applying to Gaussian vectors sampled in a latent space of dimension D a random projection followed by a nonlinearity. Using the replica method from statistical physics, we derive the phase diagram of the model in the limit P,N,D→∞ with fixed ratios α=P/N and α_{D}=D/N. Besides the usual retrieval phase, where the patterns can be dynamically recovered from some initial corruption, we uncover a new phase where the features characterizing the projection can be recovered instead. We call this phenomena the learning phase transition, as the features are not explicitly given to the model but rather are inferred from the patterns in an unsupervised fashion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.257301 | DOI Listing |
Heliyon
January 2025
Unité de Recherche d'Automatique et d'Informatique Appliquée (UR-AIA), IUT-FV Bandjoun University of Dschang, P.O. Box 134, Bandjoun, Cameroon.
This study presents a family of coexisting multi-scroll chaos in a network of coupled non-oscillatory neurons. The dynamics of the system are analyzed using phase portraits, basins of attraction, time series, bifurcation diagrams, and spectra of Lyapunov exponents. The coexistence of multiple bifurcation diagrams leads to a complex pattern of multi-scroll formation, which is further complicated by the presence of coexisting single-scroll attractors that merge to form multi-scroll chaos.
View Article and Find Full Text PDFArXiv
January 2025
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.
We study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Department of Electronics and Communication Engineering, Vemu Institute of Technology, Chittoor, India.
The studies conducted in this contribution are based on the analysis of the dynamics of a homogeneous network of five inertial neurons of the Hopfield type to which a unidirectional ring coupling topology is applied. The coupling is achieved by perturbing the next neuron's amplitude with a signal proportional to the previous one. The system consists of ten coupled ODEs, and the investigations carried out have allowed us to highlight several unusual and rarely related dynamics, hence the importance of emphasizing them.
View Article and Find Full Text PDFNeural Netw
March 2025
Wang Zheng School of Microelectronics, Changzhou University, Changzhou, 213159, PR China. Electronic address:
Memristors are commonly used as the connecting parts of neurons in brain-like neural networks. The memristors, unlike the existing literature, possess the capability to function as both self-connected synaptic weights and interconnected synaptic weights, thereby enabling the generation of intricate initials-regulated plane coexistence behaviors. To demonstrate this dynamical effect, a Hopfield neural network with two-memristor-interconnected neurons (TMIN-HNN) is proposed.
View Article and Find Full Text PDFJ Comput Cogn Eng
November 2024
Department of Computer Science, Utah Valley University, USA.
A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!