In two-dimensional antiferromagnets, we find that the mixed Berry curvature can be attributed as the geometrical origin of the nonreciprocal directional dichroism (NDD), which refers to the difference in light absorption between opposite propagation directions. This Berry curvature is closely related to the uniaxial strain in accordance with the symmetry constraint, leading to a highly tunable NDD, whose sign and strength can be tuned via strain direction. We choose the lattice model of MnBi_{2}Te_{4} as a concrete example. The coupling between mixed Berry curvature and strain also suggests the magnetic quadrupole of the Bloch wave packet as the macroscopic order parameter probed by the NDD in two dimensions, which is distinct from the multiferroic order P×M or the spin toroidal and quadrupole order within a unit cell in previous studies. Our work paves the way for the Berry-curvature engineering for optical nonreciprocity in two-dimensional antiferromagnets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.256901 | DOI Listing |
RSC Adv
January 2025
Institute of Theoretical and Applied Research, Duy Tan University Ha Noi 100000 Vietnam
In this work, Ge vacancies and doping with transition metals (Mn and Fe) are proposed to modulate the electronic and magnetic properties of GeP monolayers. A pristine GeP monolayer is a non-magnetic two-dimensional (2D) material, exhibiting indirect gap semiconductor behavior with an energy gap of 1.34(2.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Recent studies have demonstrated the ability to switch weakly coupled interlayer magnetic orders by using electric polarization in insulating van der Waals heterostructures. However, controlling strongly coupled intralayer magnetic orders remains a significant challenge. In this work, we propose that frustrated multiferroic heterostructures can exhibit enhanced intralayer magnetoelectric coupling.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
Two 3D/2D anionic metal-organic frameworks (MOFs), [Cu(HL)] () and [Mn(L)(DMF)] ( (DMF = ,-dimethylformamide), were synthesized by the solvothermal reaction of metal salts and 5'-(4-carboxyphenyl)-2',4',6'-triethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid (HL). Single-crystal X-ray diffraction analyses revealed that complex shows three-dimensional (3D) frameworks with a (3,6)-connected 3-fold interpenetrated topology with the Schläfli symbols of {4.6}{4.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Applied Physics, Institute of Natural Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
SrCu(BO) (Sr-122) has attracted considerable interest as a quasi-two-dimensional S = 1/2 Heisenberg antiferromagnetic spin system with a Shastry-Sutherland lattice (SSL) structure. It features a Cu spin dimer ground state and exhibits intra-dimer Dzyaloshinskii-Moriya interactions, making Sr-122 a fascinating platform for studying quantum magnetic phenomena. In this study, we investigate the β-phase of SrCu(BO) (β-Sr-212), which retains the same spin structure as Sr-122, to explore how the carrier concentration affects the spin gap.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!