Signatures of Prethermalization in a Quenched Cavity-Mediated Long-Range Interacting Fermi Gas.

Phys Rev Lett

State Key Laboratory of Precision Spectroscopy, Institute of Quantum Science and Precision Measurement, East China Normal University, Shanghai 200062, China.

Published: December 2023

The coupling of ultracold quantum gases to an optical cavity provides an ideal system for studying the novel long-range interacting nonequilibrium dynamics. Here we report an experimental observation of the out-of-equilibrium dynamics of a degenerate Fermi gas in the cavity after quenching the pump strength over a superradiant quantum phase transition. The relaxation dynamics exhibits impressively different stages of a delay, violent relaxation, long-lifetime prethermalization, and slowly final thermalization due to the photon-mediated long-range interaction with dissipation. Importantly, we reveal that the lifetime of the system stayed on the prethermalization exhibits the superlinear scaling of the atom number. Furthermore, we show that the backaction of the superradiant cavity field on the gas causes the exchange of atoms between the normal and superradiant state in the early evolution and then induces the prethermalization. This work opens an avenue to explore complex nonequilibrium dynamics of the dissipatively long-range interacting Fermi gases.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.243401DOI Listing

Publication Analysis

Top Keywords

long-range interacting
12
interacting fermi
8
fermi gas
8
nonequilibrium dynamics
8
signatures prethermalization
4
prethermalization quenched
4
quenched cavity-mediated
4
long-range
4
cavity-mediated long-range
4
gas coupling
4

Similar Publications

Cis-regulatory elements bridge enhancers and gene promoters to control gene expression via distal DNA interaction and three-dimensional chromosomal conformation organization. The aberrant changes of cis-acting regulatory systems as one type of the epigenetic regulative ways may be connected with human genetic diseases. Klotho, as an antiaging protein, is selectively expressed in kidney tissues and plays a crucial role in preventing chronic kidney disease (CKD) and renal fibrosis.

View Article and Find Full Text PDF

Emerging single cell technologies that simultaneously capture long-range interactions of genomic loci together with their DNA methylation levels are advancing our understanding of three-dimensional genome structure and its interplay with the epigenome at the single cell level. While methods to analyze data from single cell high throughput chromatin conformation capture (scHi-C) experiments are maturing, methods that can jointly analyze multiple single cell modalities with scHi-C data are lacking. Here, we introduce Muscle, a semi-nonnegative joint decomposition of Multiple single cell tensors, to jointly analyze 3D conformation and DNA methylation data at the single cell level.

View Article and Find Full Text PDF

Spin Glass Transition of Magnetic Ionic Liquids Induced by Self-Assembly.

Langmuir

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.

View Article and Find Full Text PDF

Investigation of serotonin-receptor interactions, stability and signal transduction pathways via molecular dynamics simulations.

Biophys Chem

December 2024

Department of Chemistry and Center for Atomic, Molecular, Optical Sciences and Technologies (CAMOST), Indian Institute of Science, Education and Research (IISER) Tirupati, Yerpedu Mandal, Tirupati 517619, India. Electronic address:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT receptor (5HTR) via electrostatic interactions. Key residues for electrostatic interactions were identified via bond distance analysis and frustration analysis methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!