A multimodal magnetoelastic artificial skin for underwater haptic sensing.

Sci Adv

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Published: January 2024

Future exploitation of marine resources in a sustainable and eco-friendly way requires autonomous underwater robotics with human-like perception. However, the development of such intelligent robots is now impeded by the lack of adequate underwater haptic sensing technology. Inspired by the populational coding strategy of the human tactile system, we harness the giant magnetoelasticity in soft polymer systems as an innovative platform technology to construct a multimodal underwater robotic skin for marine object recognition with intrinsic waterproofness and a simple configuration. The bioinspired magnetoelastic artificial skin enables multiplexed tactile modality in each single taxel and obtains an impressive classification rate of 95% in identifying seven types of marine creatures and marine litter. By introducing another degree of freedom in underwater haptic sensing, this work represents a milestone toward sustainable marine resource exploitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775997PMC
http://dx.doi.org/10.1126/sciadv.adj8567DOI Listing

Publication Analysis

Top Keywords

underwater haptic
12
haptic sensing
12
magnetoelastic artificial
8
artificial skin
8
underwater
5
marine
5
multimodal magnetoelastic
4
skin underwater
4
sensing future
4
future exploitation
4

Similar Publications

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low-surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features.

View Article and Find Full Text PDF

In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO and propose a self-calibration compensation strategy.

View Article and Find Full Text PDF

A multimodal magnetoelastic artificial skin for underwater haptic sensing.

Sci Adv

January 2024

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Future exploitation of marine resources in a sustainable and eco-friendly way requires autonomous underwater robotics with human-like perception. However, the development of such intelligent robots is now impeded by the lack of adequate underwater haptic sensing technology. Inspired by the populational coding strategy of the human tactile system, we harness the giant magnetoelasticity in soft polymer systems as an innovative platform technology to construct a multimodal underwater robotic skin for marine object recognition with intrinsic waterproofness and a simple configuration.

View Article and Find Full Text PDF

Marine mammal sensory systems: Special issue overview.

Anat Rec (Hoboken)

March 2022

Institute for Biosciences, Neuroethology, University of Rostock, Rostock, Germany.

Marine mammals are a unique group of organisms that are secondarily adapted to the aquatic environment. Their specific lifestyle requires numerous adaptations of anatomy and physiology in general, and sensory physiology in particular. During the course of evolution, marine mammal senses changed to fit with the specific requirements of underwater sensing, while at the same time retaining aerial sensing to various degrees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!