Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra, Ba, and Sr. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid () bound Ra, Ba, and Sr to form . Upon isolating radioactive Ra from its parent radionuclides (Ac and Th), Ra reacted with the fully deprotonated chelator to generate (log = 5.97 ± 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr and Ba congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for ] and many donor atoms [≥11 in ] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776001PMC
http://dx.doi.org/10.1126/sciadv.adj8765DOI Listing

Publication Analysis

Top Keywords

heavy alkaline
12
alkaline earth
12
advances heavy
4
earth chemistry
4
chemistry provide
4
provide insight
4
insight complexation
4
complexation weakly
4
weakly polarizing
4
polarizing cations
4

Similar Publications

Sludge landfilling is widely used in China, accounting for approximately 65% of total sludge disposal, due to its simplicity and cost-effectiveness. However, with increasing land scarcity and stricter environmental regulations, the Chinese government has emphasized reducing sludge landfilling. Despite these efforts, sludge historically disposed of in landfills continues to pose risks, including heavy metal leaching and contamination of groundwater and soil.

View Article and Find Full Text PDF

Geochemical speciation and activation risks of Cd, Ni, and Zn in soils with naturally high background in karst regions of southwestern China.

J Hazard Mater

January 2025

MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Agricultural soils in karst regions present a remarkable paradox where high geochemical background levels of heavy metals correspond with unexpectedly low crop uptake, challenging traditional risk assessment frameworks and limiting agricultural development. To decode this paradox, we investigated the geochemical speciation of cadmium (Cd), nickel (Ni), and zinc (Zn) in soil-rice systems in southwestern China, which collectively constitute the world's largest continuous karst region and represent diverse soil weathering stages. We employed three chemical extraction methods that revealed reactive pools ranking as Cd (58.

View Article and Find Full Text PDF

Activated Nanocellulose from Corn Husk: Application to As and Pb Adsorption Kinetics in Batch Wastewater.

Polymers (Basel)

December 2024

Research Group for the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.

The aim of this study was to evaluate the removal of Pb and As from an aqueous solution using corn residue cellulose nanocrystals (NCCs). The corn husk was subjected to alkaline digestion, followed by bleaching and esterification with 3% citric acid to obtain NCCs. A 10 ppm multimetal solution of Pb and As was prepared.

View Article and Find Full Text PDF

Naturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!