A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ambient health sensing on passive surfaces using metamaterials. | LitMetric

Ambient health sensing on passive surfaces using metamaterials.

Sci Adv

Integrative Sciences and Engineering Program, National University of Singapore, Singapore 119077, Singapore.

Published: January 2024

Ambient sensors can continuously and unobtrusively monitor a person's health and well-being in everyday settings. Among various sensing modalities, wireless radio-frequency sensors offer exceptional sensitivity, immunity to lighting conditions, and privacy advantages. However, existing wireless sensors are susceptible to environmental interference and unable to capture detailed information from multiple body sites. Here, we present a technique to transform passive surfaces in the environment into highly sensitive and localized health sensors using metamaterials. Leveraging textiles' ubiquity, we engineer metamaterial textiles that mediate near-field interactions between wireless signals and the body for contactless and interference-free sensing. We demonstrate that passive surfaces functionalized by these metamaterials can provide hours-long cardiopulmonary monitoring with accuracy comparable to gold standards. We also show the potential of distributed sensors and machine learning for continuous blood pressure monitoring. Our approach enables passive environmental surfaces to be harnessed for ambient sensing and digital health applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776016PMC
http://dx.doi.org/10.1126/sciadv.adj6613DOI Listing

Publication Analysis

Top Keywords

passive surfaces
12
sensors
5
ambient health
4
sensing
4
health sensing
4
passive
4
sensing passive
4
surfaces
4
surfaces metamaterials
4
metamaterials ambient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!