Background: Evaluating immune responses following COVID-19 vaccination is paramount to understanding vaccine effectiveness and optimizing public health interventions. This study seeks to elucidate individuals' immune status after administering a second dose of diverse COVID-19 vaccines. By analyzing immune responses through serological markers, we aim to contribute valuable insights into the uniformity of vaccine performance.
Methods: A total of 80 participants were enrolled in this study, with demographic and COVID-19 infection-related data collected for categorization. Serum samples were acquired within a specified timeframe, and SARS-CoV-2 IgM/IgG rapid tests were conducted. Moreover, CTLA-4 levels were measured through ELISA assays, allowing us to assess the immune responses comprehensively. The participants were divided into eight groups based on various factors, facilitating a multifaceted analysis.
Results: The outcomes of our investigation demonstrated consistent immune responses across the diverse types of COVID-19 vaccines administered in Iraq. Statistical analysis revealed no significant distinctions among the vaccine categories. In contrast, significant differences were observed in CTLA-4 among the control group (non-infected/non-vaccinated, infected/non-vaccinated) and infected/Pfizer, non-infected/Pfizer, and infected/Sinopharm, non-infected/sinopharm (P = 0.001, < 0.001, 0.023, respectively). This suggests that these vaccines exhibit comparable effectiveness in eliciting an immune response among the study participants.
Conclusions: In conclusion, our study's results underscore the lack of discriminatory variations between different COVID-19 vaccine types utilized in Iraq. The uniform immune responses observed signify the equitable efficacy and performance of these vaccines. Despite minor quantitative discrepancies, these variations do not hold statistical significance, reaffirming the notion that the various vaccines serve a similar purpose in conferring protection against COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769031 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296521 | PLOS |
ACS Appl Mater Interfaces
January 2025
Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202.
The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFScience
January 2025
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR).
View Article and Find Full Text PDFPLoS Pathog
January 2025
Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.
Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!