Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peroxdiase is one of the member of oxireductase super family, which has a broad substrate range and a variety of reaction types, including hydroxylation, epoxidation or halogenation of unactivated C-H bonds, and aromatic group or biophenol compounds. Here, we summarized the recently discovered enzymes with peroxidation activity, and focused on the special structures, sites, and corresponding strategies that can change the peroxidase catalytic activity, stability, and substrate range. The comparison of the structural differences between these natural enzymes and the mimic enzymes of binding nanomaterials and polymer materials is helpful to expand the application of peroxidase in industry. In addition, we also reviewed the catalytic application of peroxidase in the synthesis of important organic molecules and the degradation of pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-023-04835-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!