Purpose Of Review: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. Epithelial sodium channel (ENaC) plays a critical role in renal electrolyte and volume regulation and has been implicated in the pathogenesis of SSBP. This review describes recent advances regarding the role of ENaC-dependent inflammation in the development of SSBP.
Recent Findings: We recently found that sodium enters dendritic cells via ENaC, a process regulated by serum/glucocorticoid-regulated kinase 1 and epoxyeicosatrienoic acid 14,15. Sodium entry activates NADPH oxidase, leading to the production of isolevuglandins (IsoLGs). IsoLGs adduct self-proteins to form neoantigens in dendritic cells that activate T cells and result in the release of cytokines promoting sodium retention, kidney damage, and endothelial dysfunction in SSBP. Additionally, we described a novel mechanistic pathway involving ENaC and IsoLG-dependent NLRP3 inflammasome activation. These findings hold promise for the development of novel diagnostic biomarkers and therapeutic options for SSBP.
Summary: The exact mechanisms underlying SSBP remain elusive. Recent advances in understanding the extrarenal role of ENaC have opened a new perspective, and further research efforts should focus on understanding the link between ENaC, inflammation, and SSBP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842661 | PMC |
http://dx.doi.org/10.1097/MNH.0000000000000963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!