Machine learning is increasingly integrated into chemistry research by guiding experimental procedures, correlating structure and function, interpreting large experimental datasets, to distill scientific insights that might be challenging with traditional methods. Such applications, however, largely focus on gaining insights via big data and/or big computation, while neglecting the valuable chemical prior knowledge dwelling in chemists' minds. In this paper, we introduce an Electrochemistry-Informed Neural Network (ECINN) by explicitly embedding electrochemistry priors including the Butler-Volmer (BV), Nernst and diffusion equations on the backbone of neural networks for multi-task discovery of electrochemistry parameters. We applied the ECINN to voltammetry experiments of and redox couples to discover electrode kinetics and mass transport parameters. Notably, ECINN seamlessly integrated mass transport with BV to analyze the entire voltammogram to infer transfer coefficients directly, so offering a new approach to Tafel analysis by outdating various mass transport correction methods. In addition, ECINN can help discover the nature of electron transfer and is shown to refute incorrect physics if imposed. This work encourages chemists to embed their domain knowledge into machine learning models to start a new paradigm of chemistry-informed machine learning for better accountability, interpretability, and generalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202315937 | DOI Listing |
J Med Internet Res
January 2025
Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Smith School of Business, Queen's University, Kingston, ON, Canada.
Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Computer Science, Purdue University, West Lafayett, IN, United States.
Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.
View Article and Find Full Text PDFBiol Reprod
January 2025
Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot 011517, China.
Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).
View Article and Find Full Text PDFJ Food Sci
January 2025
Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.
Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!