A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly efficient synthesis of zeolite chabazite using cooperative hydration-mismatched inorganic structure-directing agents. | LitMetric

Chabazite (CHA type) zeolite is notoriously difficult to synthesize in the absence of organic structure-directing agents owing to long synthesis times and/or impurity formation. The ability to tailor organic-free syntheses of zeolites is additionally challenging due to the lack of molecular level understanding of zeolite nucleation and growth pathways, particularly the role of inorganic cations. In this study, we reveal that zeolite CHA can be synthesized using six different combinations of inorganic cations, including the first reported seed- and organic-free synthesis without the presence of potassium. We show that lithium, when present in small quantities, is an effective accelerant of CHA crystallization; and that ion pairings can markedly reduce synthesis times and temperatures, while expanding the design space of zeolite CHA formation in comparison to conventional methods utilizing potassium as the sole structure-directing agent. Herein, we posit the effects of cation pairings on zeolite CHA crystallization are related to their hydrated ionic radii. We also emphasize the broader implications for considering the solvated structure and cooperative role of inorganic cations in zeolite synthesis within the context of the reported findings for chabazite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763616PMC
http://dx.doi.org/10.1039/d3sc05625bDOI Listing

Publication Analysis

Top Keywords

inorganic cations
12
zeolite cha
12
structure-directing agents
8
synthesis times
8
role inorganic
8
cha crystallization
8
zeolite
7
synthesis
5
cha
5
highly efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!