The vascularization of bone repair materials is one of the key issues that urgently need to be addressed in the process of bone repair. The changes in macrophage phenotype and function play an important role in the process of vascularization, and endowing bone repair materials with immune regulatory characteristics to enhance angiogenesis is undoubtedly a new strategy to improve the effectiveness of bone repair. In order to improve the effect of tricalcium phosphate (TCP) on vascularization and bone repair, we doped strontium ions (Sr) into TCP (SrTCP) and prepared porous 3D printed SrTCP scaffolds using 3D printing technology, and studied the scaffold mediated macrophage polarization and subsequent vascularization and bone regeneration. The results of the interaction between the scaffold and macrophages showed that the SrTCP scaffold can promote the polarization of macrophages from M1 to M2 and secrete high concentrations of VEGF and PDGF-bb cytokines, which shows excellent angiogenic potential. When human umbilical vein endothelial cells (HUVECs) were co-cultured with macrophage-conditioned medium of SrTCP scaffold, HUVECs exhibited excellent early angiogenesis-promoting effects in terms of scratch healing, angiogenic gene expression, and in vitro tube formation performance. The results of in vivo bone repair experiments showed that the SrTCP scaffold formed a vascular network with high density and quantity in the bone defect area, which could increase the rate of new bone formation and advance the period of bone formation, and finally achieved a better bone repair effect. We observed a cascade effect in which Sr-doped SrTCP scaffold regulate macrophage polarization to enhance angiogenesis and promote bone repair, which may provide a new strategy for the repair of clinical bone defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765239 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2023.100871 | DOI Listing |
Sci Rep
December 2024
International Collaboration On Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
Cytokine storm syndromes such as hemophagocytic lymphohistiocytosis (HLH), Adult-onset Still's disease (AOSD), and COVID-19 cytokine storm (CCS) are characterized by markedly elevated inflammatory cytokines. However clinical measurement of serum cytokines is not widely available. This study examined the clinical utility of C-reactive protein (CRP) and ferritin, two inexpensive and widely available inflammatory markers, for distinguishing HLH from AOSD and CCS.
View Article and Find Full Text PDFBone
December 2024
First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China. Electronic address:
Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.
View Article and Find Full Text PDFArthroscopy
December 2024
Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Purpose: To investigate the effect of concomitant chronic lateral ankle instability (CLAI) on postoperative clinical outcomes in patients with osteochondral lesions of the talus (OLTs).
Methods: Patients who underwent surgery for OLTs between January 2018 and May 2022 were retrospectively evaluated. OLT procedures involved debridement, microfracture, or bone grafting, while concomitant CLAI underwent lateral ligament repair or reconstruction.
J Plast Reconstr Aesthet Surg
November 2024
Bagcilar Training and Research Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey.
Objective: Autoimmune diseases are systemic conditions that can have negative effects on wound healing. The objective of the present study was to investigate the efficacy of combining bone marrow-derived mesenchymal stem cells (BM-MSCs), acellular dermal matrix (ADM), split-thickness skin graft (STSG), and negative-pressure wound therapy (NPWT) for treating patients with autoimmune diseases and chronic non-healing wounds.
Methods: Thirty-four patients with autoimmune diseases and non-healing chronic wounds of the lower extremities between 2012 and 2023 were included in the study.
Biomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!